login
A327049
Expansion of Product_{k>=1} (1 + x^k) * (1 + x^(2*k)) * (1 + x^(3*k)) * (1 + x^(4*k)) / ((1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k))).
3
1, 2, 6, 14, 32, 64, 132, 248, 466, 838, 1488, 2560, 4370, 7272, 11988, 19424, 31160, 49280, 77294, 119780, 184164, 280408, 423808, 635136, 945628, 1397398, 2052536, 2995210, 4346416, 6270272, 8999668, 12848584, 18257122, 25817760, 36349600, 50952064, 71131448
OFFSET
0,2
COMMENTS
Convolution of A327046 and A327043.
LINKS
FORMULA
a(n) ~ 5^(5/2) * exp(5*Pi*sqrt(n/3)/2) / (2^(17/2)*3^(3/4)*n^(7/4)).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1+x^k) * (1+x^(2*k)) * (1+x^(3*k)) * (1+x^(4*k))/((1-x^k) * (1-x^(2*k)) * (1-x^(3*k)) * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 16 2019
STATUS
approved