login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188216
Expansion of 1 + Sum_{n>=1} (x^(n^2) / Product_{k>=n} (1 - x^k)).
5
1, 1, 1, 2, 4, 5, 8, 12, 17, 25, 34, 46, 64, 86, 114, 151, 200, 258, 335, 431, 552, 703, 891, 1121, 1411, 1764, 2196, 2725, 3374, 4155, 5111, 6260, 7650, 9319, 11329, 13726, 16608, 20031, 24114, 28962, 34725, 41529, 49595, 59095, 70304, 83476, 98968, 117109
OFFSET
0,4
COMMENTS
Number of partitions of n such that if k is the least part, then k occurs at least k times. - Joerg Arndt, Apr 17 2011
LINKS
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i>n, 0, b(n, i+1)+b(n-i, i)))
end:
a:= n-> `if`(n=0, 1, add(b(n-j^2, j), j=1..isqrt(n))):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 03 2021
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]];
a[n_] := If[n==0, 1, Sum[b[n - j^2, j], {j, 1, Sqrt[n]}]];
a /@ Range[0, 50] (* Jean-François Alcover, Jan 25 2021, after Alois P. Heinz *)
PROG
(PARI) N=55; x='x+O('x^N);
t=1+sum(n=1, N, x^(n^2)/prod(k=n, N, 1-x^k));
Vec(t)
CROSSREFS
Cf. A096403 (expansion of sum(n>=1, x^(n^2) / prod(k>=n+1, 1-x^k)) ).
Cf. A003114 (largest part k occurs at least k times).
Sequence in context: A069259 A102186 A039842 * A238395 A116901 A350846
KEYWORD
nonn
AUTHOR
Joerg Arndt, Mar 24 2011
STATUS
approved