login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188213
Number of nondecreasing arrangements of 6 numbers in -(n+4)..(n+4) with sum zero.
1
338, 676, 1242, 2137, 3486, 5444, 8196, 11963, 17002, 23612, 32134, 42955, 56512, 73294, 93844, 118765, 148718, 184430, 226694, 276373, 334402, 401792, 479632, 569093, 671430, 787986, 920192, 1069575, 1237756, 1426456, 1637498, 1872809
OFFSET
1,1
COMMENTS
Row 6 of A188211.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + 2*a(n-5) - a(n-6) - a(n-7) + 2*a(n-8) - a(n-10) - 2*a(n-11) + 3*a(n-12) - a(n-13).
Empirical g.f.: x*(338 - 338*x - 110*x^2 + 101*x^3 + 235*x^4 - 174*x^5 - 41*x^6 + 279*x^7 - 83*x^8 - 217*x^9 - 146*x^10 + 395*x^11 - 151*x^12) / ((1 - x)^6*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Apr 27 2018
EXAMPLE
Some solutions for n=3:
.-3...-6...-6...-4...-6...-4...-5...-4...-5...-5...-4...-6...-4...-4...-6...-3
.-3...-2...-2...-3...-6...-2...-2...-3...-5...-4...-4...-5...-1...-3...-4...-3
.-3...-2...-1...-2...-5...-1...-2...-1...-2....0....0...-3...-1....0....0...-2
.-3....0....0...-2....5....0...-2...-1....3....2....0....4....0....2....0...-1
..5....4....3....4....6....3....4....4....4....2....4....4....2....2....5....3
..7....6....6....7....6....4....7....5....5....5....4....6....4....3....5....6
CROSSREFS
Cf. A188211.
Sequence in context: A066478 A261707 A202443 * A250802 A186052 A186044
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 24 2011
STATUS
approved