login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202443
Number of (n+2) X 6 binary arrays avoiding patterns 001 and 110 in rows, columns and nw-to-se diagonals.
1
338, 574, 1102, 1890, 3122, 4822, 7238, 10394, 14602, 19886, 26622, 34834, 44962, 57030, 71542, 88522, 108538, 131614, 158382, 188866, 223762, 263094, 307622, 357370, 413162, 475022, 543838, 619634, 703362, 795046, 895702, 1005354, 1125082
OFFSET
1,1
COMMENTS
Column 4 of A202447.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -a(n-2) -5*a(n-3) +5*a(n-4) +a(n-5) -3*a(n-6) +a(n-7) for n>8.
Conjectures from Colin Barker, May 29 2018: (Start)
G.f.: 2*x*(169 - 220*x - 141*x^2 + 424*x^3 - 133*x^4 - 176*x^5 + 137*x^6 - 28*x^7) / ((1 - x)^5*(1 + x)^2).
a(n) = (2/3)*(n^4 + 12*n^3 + 59*n^2 + 177*n + 159) for n even.
a(n) = (2/3)*(n^4 + 12*n^3 + 59*n^2 + 183*n + 168) for n>1 and odd.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..0..0..0..0....1..0..1..1..1..1....1..1..1..1..1..1....1..0..1..0..1..1
..0..1..1..1..1..1....1..0..0..0..0..0....1..0..1..0..0..0....1..0..1..0..0..0
..0..1..0..0..0..0....1..0..1..0..1..1....1..0..1..1..1..1....1..0..1..0..1..0
..0..1..0..1..1..1....1..0..0..0..0..0....1..0..1..0..1..1....1..0..1..0..0..0
..0..1..0..1..0..1....1..0..1..0..1..0....1..0..1..1..1..1....1..0..1..0..1..0
..0..1..0..1..1..1....1..0..1..0..0..0....1..0..1..1..1..1....1..0..1..0..0..0
CROSSREFS
Cf. A202447.
Sequence in context: A226539 A066478 A261707 * A188213 A250802 A186052
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 19 2011
STATUS
approved