login
A022578
Expansion of Product_{m>=1} (1+x^m)^13.
2
1, 13, 91, 468, 1989, 7384, 24739, 76427, 220948, 604175, 1575392, 3941847, 9511944, 22226049, 50458447, 111609537, 241099027, 509680951, 1056262792, 2149214288, 4299359012, 8465605408, 16424772637, 31429372312, 59365381608, 110770031489, 204315725953, 372772306309, 673125106316
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (13/3)^(1/4) * exp(Pi * sqrt(13*n/3)) / (256 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (13/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+q^m)^13, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+q^n)^13)) \\ G. C. Greubel, Feb 25 2018
(Magma) Coefficients(&*[(1+x^m)^13:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
CROSSREFS
Column k=13 of A286335.
Sequence in context: A008495 A010965 A221144 * A090020 A092469 A300779
KEYWORD
nonn
EXTENSIONS
More terms added by G. C. Greubel, Feb 25 2018
STATUS
approved