Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 Oct 10 2022 02:46:53
%S 1,6,39,252,1629,10530,68067,439992,2844153,18384894,118841823,
%T 768205620,4965759189,32099171994,207492309531,1341251373168,
%U 8669985167601,56043665125110,362271946253463,2341762672896108
%N a(n) = 6*a(n-1) + 3*a(n-2) for n > 2, a(0)=1, a(1)=6.
%C From _Johannes W. Meijer_, Aug 09 2010: (Start)
%C a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner or side square on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180032. The central square leads to A180028. (End)
%H Vincenzo Librandi, <a href="/A090018/b090018.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,3).
%F a(n) = (3+2*sqrt(3))^n*(sqrt(3)/4+1/2) + (1/2-sqrt(3)/4)*(3-2*sqrt(3))^n.
%F a(n) = (-i*sqrt(3))^n * ChebyshevU(n, isqrt(3)), i^2=-1.
%F From _Johannes W. Meijer_, Aug 09 2010: (Start)
%F G.f.: 1/(1 - 6*x - 3*x^2).
%F Lim_{k->infinity} a(n+k)/a(k) = A141041(n) + A090018(n-1)*sqrt(12) for n >= 1.
%F Lim_{n->infinity} A141041(n)/A090018(n-1) = sqrt(12).
%F (End)
%F a(n) = Sum_{k=0..n} A099089(n,k)*3^k. - _Philippe Deléham_, Nov 21 2011
%p a:= n-> (<<0|1>, <3|6>>^n. <<1,6>>)[1,1]:
%p seq(a(n), n=0..30);
%t Join[{a=1,b=6},Table[c=6*b+3*a;a=b;b=c,{n,100}]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 16 2011 *)
%t LinearRecurrence[{6,3}, {1,6}, 41] (* _G. C. Greubel_, Oct 10 2022 *)
%o (Sage) [lucas_number1(n,6,-3) for n in range(1, 31)] # _Zerinvary Lajos_, Apr 24 2009
%o (Magma) [n le 2 select 6^(n-1) else 6*Self(n-1)+3*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 15 2011
%o (PARI) my(x='x+O('x^30)); Vec(1/(1-6*x-3*x^2)) \\ _G. C. Greubel_, Jan 24 2018
%Y Cf. A180028, A180032.
%Y Sequences with g.f. of the form 1/(1 - 6*x - k*x^2): A106392 (k=-10), A027471 (k=-9), A006516 (k=-8), A081179 (k=-7), A030192 (k=-6), A003463 (k=-5), A084326 (k=-4), A138395 (k=-3), A154244 (k=-2), A001109 (k=-1), A000400 (k=0), A005668 (k=1), A135030 (k=2), this sequence (k=3), A135032 (k=4), A015551 (k=5), A057089 (k=6), A015552 (k=7), A189800 (k=8), A189801 (k=9), A190005 (k=10), A015553 (k=11).
%K nonn,easy
%O 0,2
%A _Paul Barry_, Nov 19 2003
%E Typo in Mathematica program corrected by _Vincenzo Librandi_, Nov 15 2011