The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090015 Permanent of (0,1)-matrix of size n X (n+d) with d=5 and n-1 zeros not on a line. 3
 6, 36, 258, 2136, 19998, 208524, 2393754, 29976192, 406446774, 5930064372, 92608986546, 1541044428456, 27216454135758, 508388707585116, 10013199347882058, 207381428863832784, 4505207996358719334 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7. LINKS Indranil Ghosh, Table of n, a(n) for n = 1..445 Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), pp. 197-210. FORMULA a(n) = (n+4)*a(n-1) + (n-2)*a(n-2), a(1)=6, a(2)=36 a(n) ~ exp(-1) * n! * n^5 / 5!. - Vaclav Kotesovec, Nov 30 2017 a(n) = ((n^6+21*n^5+160*n^4+545*n^3+814*n^2+415*n+1)*exp(-1)*Gamma(n, -1)+(-1)^n*(n^5+20*n^4+141*n^3+422*n^2+499*n+154))/120. - Robert Israel, Nov 26 2018 MAPLE f:= gfun:-rectoproc({a(n) = (n+4)*a(n-1) + (n-2)*a(n-2), a(1)=6, a(2)=36}, a(n), remember): map(f, [\$1..40]); # Robert Israel, Nov 26 2018 MATHEMATICA t={6, 36}; Do[AppendTo[t, (n+4)*t[[-1]]+(n-2)*t[[-2]]], {n, 3, 17}]; t (* Indranil Ghosh, Feb 21 2017 *) CROSSREFS a(n) = A001910(n-1) + A001910(n), a(1)=6 Cf. A000255, A000153, A000261, A001909, A001910, A090010, A055790, A090012-A090016. Sequence in context: A049428 A129063 A221461 * A299330 A335811 A144892 Adjacent sequences:  A090012 A090013 A090014 * A090016 A090017 A090018 KEYWORD nonn,easy AUTHOR Jaap Spies, Dec 13 2003 EXTENSIONS Corrected by Jaap Spies, Jan 26 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 01:04 EDT 2021. Contains 345330 sequences. (Running on oeis4.)