OFFSET
1,1
REFERENCES
Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..445
Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.
FORMULA
a(n) = (n+4)*a(n-1) + (n-2)*a(n-2), a(1)=6, a(2)=36
a(n) ~ exp(-1) * n! * n^5 / 5!. - Vaclav Kotesovec, Nov 30 2017
a(n) = ((n^6+21*n^5+160*n^4+545*n^3+814*n^2+415*n+1)*exp(-1)*Gamma(n, -1)+(-1)^n*(n^5+20*n^4+141*n^3+422*n^2+499*n+154))/120. - Robert Israel, Nov 26 2018
MAPLE
f:= gfun:-rectoproc({a(n) = (n+4)*a(n-1) + (n-2)*a(n-2), a(1)=6, a(2)=36}, a(n), remember):
map(f, [$1..40]); # Robert Israel, Nov 26 2018
MATHEMATICA
t={6, 36}; Do[AppendTo[t, (n+4)*t[[-1]]+(n-2)*t[[-2]]], {n, 3, 17}]; t (* Indranil Ghosh, Feb 21 2017 *)
RecurrenceTable[{a[n] == (n+4)*a[n-1] + (n-2)*a[n-2],
a[1] == 6, a[2] == 36}, a, {n, 1, 40}] (* Jean-François Alcover, Sep 16 2022, after Robert Israel *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaap Spies, Dec 13 2003
EXTENSIONS
Corrected by Jaap Spies, Jan 26 2004
STATUS
approved