login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090015
Permanent of (0,1)-matrix of size n X (n+d) with d=5 and n-1 zeros not on a line.
3
6, 36, 258, 2136, 19998, 208524, 2393754, 29976192, 406446774, 5930064372, 92608986546, 1541044428456, 27216454135758, 508388707585116, 10013199347882058, 207381428863832784, 4505207996358719334
OFFSET
1,1
REFERENCES
Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
LINKS
Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.
FORMULA
a(n) = (n+4)*a(n-1) + (n-2)*a(n-2), a(1)=6, a(2)=36
a(n) ~ exp(-1) * n! * n^5 / 5!. - Vaclav Kotesovec, Nov 30 2017
a(n) = ((n^6+21*n^5+160*n^4+545*n^3+814*n^2+415*n+1)*exp(-1)*Gamma(n, -1)+(-1)^n*(n^5+20*n^4+141*n^3+422*n^2+499*n+154))/120. - Robert Israel, Nov 26 2018
MAPLE
f:= gfun:-rectoproc({a(n) = (n+4)*a(n-1) + (n-2)*a(n-2), a(1)=6, a(2)=36}, a(n), remember):
map(f, [$1..40]); # Robert Israel, Nov 26 2018
MATHEMATICA
t={6, 36}; Do[AppendTo[t, (n+4)*t[[-1]]+(n-2)*t[[-2]]], {n, 3, 17}]; t (* Indranil Ghosh, Feb 21 2017 *)
RecurrenceTable[{a[n] == (n+4)*a[n-1] + (n-2)*a[n-2],
a[1] == 6, a[2] == 36}, a, {n, 1, 40}] (* Jean-François Alcover, Sep 16 2022, after Robert Israel *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaap Spies, Dec 13 2003
EXTENSIONS
Corrected by Jaap Spies, Jan 26 2004
STATUS
approved