Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 16 2022 08:51:55
%S 6,36,258,2136,19998,208524,2393754,29976192,406446774,5930064372,
%T 92608986546,1541044428456,27216454135758,508388707585116,
%U 10013199347882058,207381428863832784,4505207996358719334
%N Permanent of (0,1)-matrix of size n X (n+d) with d=5 and n-1 zeros not on a line.
%D Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
%H Indranil Ghosh, <a href="/A090015/b090015.txt">Table of n, a(n) for n = 1..445</a>
%H Seok-Zun Song et al., <a href="http://dx.doi.org/10.1016/S0024-3795(03)00382-3">Extremes of permanents of (0,1)-matrices</a>, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.
%F a(n) = (n+4)*a(n-1) + (n-2)*a(n-2), a(1)=6, a(2)=36
%F a(n) ~ exp(-1) * n! * n^5 / 5!. - _Vaclav Kotesovec_, Nov 30 2017
%F a(n) = ((n^6+21*n^5+160*n^4+545*n^3+814*n^2+415*n+1)*exp(-1)*Gamma(n, -1)+(-1)^n*(n^5+20*n^4+141*n^3+422*n^2+499*n+154))/120. - _Robert Israel_, Nov 26 2018
%p f:= gfun:-rectoproc({a(n) = (n+4)*a(n-1) + (n-2)*a(n-2),a(1)=6,a(2)=36},a(n),remember):
%p map(f, [$1..40]); # _Robert Israel_, Nov 26 2018
%t t={6,36};Do[AppendTo[t,(n+4)*t[[-1]]+(n-2)*t[[-2]]],{n,3,17}];t (* _Indranil Ghosh_, Feb 21 2017 *)
%t RecurrenceTable[{a[n] == (n+4)*a[n-1] + (n-2)*a[n-2],
%t a[1] == 6, a[2] == 36}, a, {n, 1, 40}] (* _Jean-François Alcover_, Sep 16 2022, after _Robert Israel_ *)
%Y a(n) = A001910(n-1) + A001910(n), a(1)=6
%Y Cf. A000255, A000153, A000261, A001909, A001910, A090010, A055790, A090012-A090016.
%K nonn,easy
%O 1,1
%A _Jaap Spies_, Dec 13 2003
%E Corrected by _Jaap Spies_, Jan 26 2004