|
|
A090016
|
|
Permanent of (0,1)-matrix of size n X (n+d) with d=6 and n-1 zeros not on a line.
|
|
12
|
|
|
7, 49, 399, 3689, 38087, 433713, 5394991, 72737161, 1056085191, 16423175153, 272275569167, 4792916427369, 89267526953479, 1753598009244529, 36232438035285807, 785431570870425353, 17822981129678644871
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
REFERENCES
|
Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.
|
|
LINKS
|
Indranil Ghosh, Table of n, a(n) for n = 1..444
|
|
FORMULA
|
a(n) = (n+5)*a(n-1) + (n-2)*a(n-2), a(1)=7, a(2)=49
E.g.f.: 7*exp(-x)/(1-x)^8. - Vladeta Jovovic, Mar 19 2004
a(n) = (A000166(n-1)+7*A000166(n)+21*A000166(n+1)+35*A000166(n+2)+35*A000166(n+3)+21*A000166(n+4)+7*A000166(n+5)+A000166(n+6))/6!. - Vladeta Jovovic, Mar 19 2004
a(n) ~ exp(-1) * n! * n^6 / 6!. - Vaclav Kotesovec, Nov 30 2017
|
|
MATHEMATICA
|
t={7, 49}; Do[AppendTo[t, (n+5)*t[[-1]]+(n-2)*t[[-2]]], {n, 3, 17}]; t (* Indranil Ghosh, Feb 21 2017 *)
|
|
CROSSREFS
|
a(n) = A090010(n-1) + A090010(n), a(1)=7
Cf. A000255, A000153, A000261, A001909, A001910, A090010, A055790, A090012-A090015.
Sequence in context: A199554 A343583 A221462 * A005924 A145358 A195514
Adjacent sequences: A090013 A090014 A090015 * A090017 A090018 A090019
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Jaap Spies, Dec 13 2003
|
|
EXTENSIONS
|
Corrected by Jaap Spies, Jan 26 2004
|
|
STATUS
|
approved
|
|
|
|