login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090012
Permanent of (0,1)-matrix of size n X (n+d) with d=2 and n-1 zeros not on a line.
12
3, 9, 39, 213, 1395, 10617, 91911, 890901, 9552387, 112203465, 1432413063, 19743404469, 292164206259, 4619383947513, 77708277841575, 1385712098571957, 26108441941918851, 518231790473609481, 10808479322484810087
OFFSET
1,1
REFERENCES
Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
LINKS
Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.
FORMULA
a(n) = (n+1)*a(n-1) + (n-2)*a(n-2), a(1)=3, a(2)=9.
a(n) = A000153(n-1) + A000153(n), a(1)=3.
G.f.: W(0)/x -1/x, where W(k) = 1 - x*(k+3)/( x*(k+2) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 25 2013
a(n) ~ exp(-1) * n! * n^2 / 2. - Vaclav Kotesovec, Nov 30 2017
MAPLE
A090012 := proc(n, d) local r; if (n=1) then r := d+1 elif (n=2) then r := (d+1)^2 else r := (n+d-1)*A090012(n-1, d)+(n-2)*A090012(n-2, d) fi; RETURN(r); end: seq(A090012(n, 2), n=1..20);
MATHEMATICA
t={3, 9}; Do[AppendTo[t, (n+1)*t[[-1]]+(n-2)*t[[-2]]], {n, 3, 19}]; t (* Indranil Ghosh, Feb 21 2017 *)
RecurrenceTable[{a[1]==3, a[2]==9, a[n]==(n+1)a[n-1]+(n-2)a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Sep 21 2017 *)
PROG
(Python)
# Program to generate the b-file
print("1 3")
print("2 9")
a=3
b=9
c=(3+1)*b+(3-2)*a
for i in range(4, 40):
print(str(i - 1)+" "+str(c))
a=b
b=c
c=(i+1)*b+(i-2)*a # Indranil Ghosh, Feb 21 2017
KEYWORD
nonn,easy
AUTHOR
Jaap Spies, Dec 13 2003
EXTENSIONS
Corrected by Jaap Spies, Jan 26 2004
STATUS
approved