OFFSET
1,1
REFERENCES
Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..447
Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.
FORMULA
a(n) = (n+1)*a(n-1) + (n-2)*a(n-2), a(1)=3, a(2)=9.
G.f.: W(0)/x -1/x, where W(k) = 1 - x*(k+3)/( x*(k+2) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 25 2013
a(n) ~ exp(-1) * n! * n^2 / 2. - Vaclav Kotesovec, Nov 30 2017
MAPLE
MATHEMATICA
t={3, 9}; Do[AppendTo[t, (n+1)*t[[-1]]+(n-2)*t[[-2]]], {n, 3, 19}]; t (* Indranil Ghosh, Feb 21 2017 *)
RecurrenceTable[{a[1]==3, a[2]==9, a[n]==(n+1)a[n-1]+(n-2)a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Sep 21 2017 *)
PROG
(Python)
# Program to generate the b-file
print("1 3")
print("2 9")
a=3
b=9
c=(3+1)*b+(3-2)*a
for i in range(4, 40):
print(str(i - 1)+" "+str(c))
a=b
b=c
c=(i+1)*b+(i-2)*a # Indranil Ghosh, Feb 21 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jaap Spies, Dec 13 2003
EXTENSIONS
Corrected by Jaap Spies, Jan 26 2004
STATUS
approved