This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090012 Permanent of (0,1)-matrix of size n X (n+d) with d=2 and n-1 zeros not on a line. 12
 3, 9, 39, 213, 1395, 10617, 91911, 890901, 9552387, 112203465, 1432413063, 19743404469, 292164206259, 4619383947513, 77708277841575, 1385712098571957, 26108441941918851, 518231790473609481, 10808479322484810087 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7. Seok-Zun Song et al., Extremes of permanents of (0,1)-matrices, Lin. Algebra and its Applic. 373 (2003), pp. 197-210. LINKS Indranil Ghosh, Table of n, a(n) for n = 1..447 FORMULA a(n) = (n+1)*a(n-1) + (n-2)*a(n-2), a(1)=3, a(2)=9 G.f.: W(0)/x -1/x, where W(k) = 1 - x*(k+3)/( x*(k+2) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 25 2013 a(n) ~ exp(-1) * n! * n^2 / 2. - Vaclav Kotesovec, Nov 30 2017 MAPLE A090012 := proc(n, d) local r; if (n=1) then r := d+1 elif (n=2) then r := (d+1)^2 else r := (n+d-1)*A090012(n-1, d)+(n-2)*A090012(n-2, d) fi; RETURN(r); end: seq(A090012(n, 2), n=1..20); MATHEMATICA t={3, 9}; Do[AppendTo[t, (n+1)*t[[-1]]+(n-2)*t[[-2]]], {n, 3, 19}]; t (* Indranil Ghosh, Feb 21 2017 *) RecurrenceTable[{a[1]==3, a[2]==9, a[n]==(n+1)a[n-1]+(n-2)a[n-2]}, a, {n, 20}] (* Harvey P. Dale, Sep 21 2017 *) PROG (Python) #Program to generate the b-file print "1 3" print "2 9" i=3 a=3 b=9 c=(i+1)*b+(i-2)*a while i<=447: ....print str(i)+" "+str(c) ....a=b ....b=c ....i+=1 ....c=(i+1)*b+(i-2)*a # Indranil Ghosh, Feb 21 2017 CROSSREFS a(n) = A000153(n-1) + A000153(n), a(1)=3 Cf. A000255, A000153, A000261, A001909, A001910, A090010, A055790, A090013-A090016. Sequence in context: A030799 A273396 A058105 * A079096 A143293 A101395 Adjacent sequences:  A090009 A090010 A090011 * A090013 A090014 A090015 KEYWORD nonn,easy AUTHOR Jaap Spies, Dec 13 2003 EXTENSIONS Corrected by Jaap Spies, Jan 26 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 20:12 EST 2019. Contains 329961 sequences. (Running on oeis4.)