login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Permanent of (0,1)-matrix of size n X (n+d) with d=6 and n-1 zeros not on a line.
12

%I #17 Feb 20 2024 13:17:36

%S 7,49,399,3689,38087,433713,5394991,72737161,1056085191,16423175153,

%T 272275569167,4792916427369,89267526953479,1753598009244529,

%U 36232438035285807,785431570870425353,17822981129678644871

%N Permanent of (0,1)-matrix of size n X (n+d) with d=6 and n-1 zeros not on a line.

%D Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.

%H Indranil Ghosh, <a href="/A090016/b090016.txt">Table of n, a(n) for n = 1..444</a>

%H Seok-Zun Song et al., <a href="https://doi.org/10.1016/S0024-3795(03)00382-3">Extremes of permanents of (0,1)-matrices</a>, Lin. Algebra and its Applic. 373 (2003), pp. 197-210.

%F a(n) = (n+5)*a(n-1) + (n-2)*a(n-2), a(1)=7, a(2)=49

%F E.g.f.: 7*exp(-x)/(1-x)^8. - _Vladeta Jovovic_, Mar 19 2004

%F a(n) = (A000166(n-1)+7*A000166(n)+21*A000166(n+1)+35*A000166(n+2)+35*A000166(n+3)+21*A000166(n+4)+7*A000166(n+5)+A000166(n+6))/6!. - _Vladeta Jovovic_, Mar 19 2004

%F a(n) ~ exp(-1) * n! * n^6 / 6!. - _Vaclav Kotesovec_, Nov 30 2017

%t t={7,49};Do[AppendTo[t,(n+5)*t[[-1]]+(n-2)*t[[-2]]],{n,3,17}];t (* _Indranil Ghosh_, Feb 21 2017 *)

%Y a(n) = A090010(n-1) + A090010(n), a(1)=7

%Y Cf. A000255, A000153, A000261, A001909, A001910, A090010, A055790, A090012-A090015.

%K nonn,easy

%O 1,1

%A _Jaap Spies_, Dec 13 2003

%E Corrected by _Jaap Spies_, Jan 26 2004