Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 31 2024 13:54:26
%S 1,-7,45,-291,1881,-12159,78597,-508059,3284145,-21229047,137226717,
%T -887047443,5733964809,-37064931183,239591481525,-1548743682699,
%U 10011236540769,-64713650292711,418315611378573,-2704034619149571,17479154549033145,-112987031151647583
%N Expansion of (1-x)/(1 + 6*x - 3*x^2).
%C A transformation of x/(1-2*x-2*x^2).
%C The g.f. is the transform of the g.f. of A002605 under the mapping G(x) -> (-1/(1+x))*G((x-1)/(x+1)). In general this mapping transforms x/(1-k*x-k*x^2) into (1-x)/(1+2*(k+1)*x-(2*k-1)*x^2).
%C For n >= 1, |a(n)| equals the numbers of words of length n-1 on alphabet {0,1,...,6} containing no subwords 00, 11, 22, 33. - _Milan Janjic_, Jan 31 2015
%H G. C. Greubel, <a href="/A099842/b099842.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-6,3).
%F G.f.: (1-x)/(1+6*x-3*x^2).
%F a(n) = (1/2 - sqrt(3)/3)*(-3 + 2*sqrt(3))^n + (1/2 + sqrt(3)/3)*(-3 - 2*sqrt(3))^n.
%F a(n) = (-1)^n*Sum_{k=0..n} binomial(n, k)(-1)^(n-k)*A002605(2k+2)/2.
%F a(n) = (-1)^n*(A090018(n) + A090018(n-1)). - _R. J. Mathar_, Apr 07 2022
%t LinearRecurrence[{-6,3}, {1,-7}, 31] (* _G. C. Greubel_, Oct 10 2022 *)
%t CoefficientList[Series[(1-x)/(1+6x-3x^2),{x,0,40}],x] (* _Harvey P. Dale_, Aug 31 2024 *)
%o (Magma) [n le 2 select (-7)^(n-1) else -6*Self(n-1) +3*Self(n-2): n in [1..31]]; // _G. C. Greubel_, Oct 10 2022
%o (SageMath)
%o A099842 = BinaryRecurrenceSequence(-6,3,1,-7)
%o [A099842(n) for n in range(31)] # _G. C. Greubel_, Oct 10 2022
%Y Cf. A002605, A090018.
%K easy,sign
%O 0,2
%A _Paul Barry_, Oct 27 2004