login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190970
a(n) = 5*a(n-1) - 9*a(n-2), with a(0)=0, a(1)=1.
6
0, 1, 5, 16, 35, 31, -160, -1079, -3955, -10064, -14725, 16951, 217280, 933841, 2713685, 5163856, 1396115, -39494129, -210035680, -694731239, -1583335075, -1664094224, 5929544555, 44624570791, 169756952960, 447163627681, 708005561765, -484444840304
OFFSET
0,3
FORMULA
G.f.: x/(1 - 5*x + 9*x^2). - Philippe Deléham, Oct 12 2011
a(n) = 3^(n-1) * ChebyshevU(n-1, 5/6). - G. C. Greubel, Jun 09 2022
MAPLE
A190970 := proc(n)
option remember ;
if n <= 1 then
n;
else
5*procname(n-1)-9*procname(n-2) ;
end if;
end proc: # R. J. Mathar, Mar 23 2023
MATHEMATICA
LinearRecurrence[{5, -9}, {0, 1}, 50]
PROG
(Magma) [n le 2 select n-1 else 5*Self(n-1) - 9*Self(n-2): n in [1..51]]; // G. C. Greubel, Jun 09 2022
(Sage) [3^(n-1)*chebyshev_U(n-1, 5/6) for n in (0..50)] # G. C. Greubel, Jun 09 2022
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A096941 A246697 A098404 * A077415 A234362 A363613
KEYWORD
sign,easy
AUTHOR
STATUS
approved