OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10).
FORMULA
a(n) = (i/sqrt(15))*(((5 - i*sqrt(15))/2)^n - ((5 + i*sqrt(15))/2)^n). - Giorgio Balzarotti, May 28 2011
G.f.: x/(1 - 5*x + 10*x^2). - Philippe Deléham, Oct 12 2011
From G. C. Greubel, Jun 10 2022: (Start)
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, sqrt(10)/4).
E.g.f.: (2/sqrt(15))*exp(5*x/2)*sin(sqrt(15)*x/2). (End)
MATHEMATICA
LinearRecurrence[{5, -10}, {0, 1}, 50]
PROG
(PARI) concat(0, Vec(x/(1-5*x+10*x^2) + O(x^100))) \\ Altug Alkan, Nov 26 2015
(Magma) [n le 2 select n-1 else 5*(Self(n-1) - 2*Self(n-2)): n in [1..51]]; // G. C. Greubel, Jun 10 2022
(Sage) [lucas_number1(n, 5, 10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Vladimir Joseph Stephan Orlovsky, May 24 2011
STATUS
approved