login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A190971
a(n) = 5*a(n-1) - 10*a(n-2), with a(0)=0, a(1)=1.
2
0, 1, 5, 15, 25, -25, -375, -1625, -4375, -5625, 15625, 134375, 515625, 1234375, 1015625, -7265625, -46484375, -159765625, -333984375, -72265625, 2978515625, 15615234375, 48291015625, 85302734375, -56396484375, -1135009765625, -5111083984375, -14205322265625
OFFSET
0,3
FORMULA
a(n) = (i/sqrt(15))*(((5 - i*sqrt(15))/2)^n - ((5 + i*sqrt(15))/2)^n). - Giorgio Balzarotti, May 28 2011
G.f.: x/(1 - 5*x + 10*x^2). - Philippe Deléham, Oct 12 2011
From G. C. Greubel, Jun 10 2022: (Start)
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, sqrt(10)/4).
E.g.f.: (2/sqrt(15))*exp(5*x/2)*sin(sqrt(15)*x/2). (End)
MATHEMATICA
LinearRecurrence[{5, -10}, {0, 1}, 50]
PROG
(PARI) concat(0, Vec(x/(1-5*x+10*x^2) + O(x^100))) \\ Altug Alkan, Nov 26 2015
(Magma) [n le 2 select n-1 else 5*(Self(n-1) - 2*Self(n-2)): n in [1..51]]; // G. C. Greubel, Jun 10 2022
(Sage) [lucas_number1(n, 5, 10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
CROSSREFS
Cf. A190958 (index to generalized Fibonacci sequences).
Sequence in context: A354297 A066548 A075359 * A228806 A075336 A031236
KEYWORD
sign
AUTHOR
STATUS
approved