OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,5).
FORMULA
G.f.: (1 + x)/(1 - 7*x - 5*x^2).
a(n) = 7*a(n-1) + 5*a(n-2) with n>1, a(0) = 1, a(1) = 8.
a(n) = (2^(-1-n) * ((7-sqrt(69))^n * (-9+sqrt(69)) + (7+sqrt(69))^n * (9+sqrt(69)))) / sqrt(69). - Colin Barker, Sep 08 2016
MAPLE
A254602:=n->(2^(-1-n) * ((7-sqrt(69))^n * (-9+sqrt(69)) + (7+sqrt(69))^n * (9+sqrt(69)))) / sqrt(69): seq(simplify(A254602(n)), n=0..30); # Wesley Ivan Hurt, Sep 08 2016
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 8, a[n] == 7 a[n - 1] + 5 a[n - 2]}, a[n], {n, 0, 25}]
LinearRecurrence[{7, 5}, {1, 8}, 30] (* Harvey P. Dale, Jun 23 2017 *)
PROG
(Magma) [n le 1 select 8^n else 7*Self(n)+5*Self(n-1): n in [0..25]];
(PARI) Vec((1+x)/(1-7*x-5*x^2) + O(x^30)) \\ Colin Barker, Sep 08 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Feb 02 2015
STATUS
approved