login
A361772
Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - (-x)^n)^(2*n-1).
5
1, 1, 8, 61, 600, 6072, 65804, 733435, 8415694, 98529785, 1173278329, 14162417506, 172914841649, 2131621288494, 26495818020038, 331706510158239, 4178800564364333, 52935845003315662, 673878770026778330, 8616336680850069832, 110606714769468383785, 1424933340070339610543
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - (-x)^n)^(2*n-1).
(2) 1 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n^2) / (1 - 2*A(x)*(-x)^n)^(2*n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 61*x^3 + 600*x^4 + 6072*x^5 + 65804*x^6 + 733435*x^7 + 8415694*x^8 + 98529785*x^9 + 1173278329*x^10 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A] = polcoeff( sum(m=-#A, #A, x^m * (2*Ser(A) - (-x)^m)^(2*m-1) ), #A-1)/2); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 13 2023
STATUS
approved