login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362944
Number of set partitions of [2n] with n circular connectors.
2
1, 0, 8, 61, 1339, 27497, 700526, 20738540, 701018049, 26600152925, 1118837321664, 51638294897821, 2593507095707555, 140767051300283971, 8208477680892328056, 511665532350037672814, 33945069368611365210831, 2387678179967017695888746, 177467827693197791991904437
OFFSET
0,3
LINKS
Toufik Mansour and Augustine O. Munagi, Block-connected set partitions, European J. Combin., 31 (2010), 887-902.
FORMULA
a(n) = A185983(2n,n).
EXAMPLE
a(2) = 8: 1|234, 134|2, 124|3, 123|4, 12|34, 14|23, 1|24|3, 13|2|4.
MAPLE
b:= proc(n, i, m, t) option remember; `if`(n=0, x^(t+
`if`(i=m and m<>1, 1, 0)), add(expand(b(n-1, j,
max(m, j), `if`(j=m+1, 0, t+`if`(j=1 and i=m
and j<>m, 1, 0)))*`if`(j=i+1, x, 1)), j=1..m+1))
end:
a:= n-> coeff(b(2*n, 1, 0$2), x, n):
seq(a(n), n=0..20);
CROSSREFS
Cf. A185983.
Sequence in context: A361772 A327761 A080525 * A001466 A182257 A082179
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 09 2023
STATUS
approved