login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362945
Numbers k such that k + the sum of the fifth powers of its digits is again a fifth power.
1
0, 210, 66374, 76933, 294137, 722571, 741300, 1023716, 2412593, 3959235, 4022940, 5090402, 6351886, 7821198, 9653864, 11808061, 11814811, 20427955, 24190287, 24239133, 24245187, 33518020, 33532714, 33536551, 39060306, 52476271, 52480534, 69255266, 69265142, 79091461, 89980491, 90147222
OFFSET
0,2
PROG
(PARI) is_A362945(n, p=5)=ispower(vecsum([d^p|d<-digits(n)])+n, p)
for(n=0, 1e8, is_A362945(n) && print1(n", "))
(Python)
ispower5 = lambda n: n==round(n**.2)**5
is_A362945 = lambda n: ispower5(sum(int(d)**5 for d in str(n))+n)
def A362945(n, A=[0]):
while len(A) < n:
A.append(A[-1]+1)
while not is_A362945(A[-1]): A[-1]+=1
return A[n]
CROSSREFS
Cf. A000584 (4th powers), A055014 (sum of 5th powers of decimal digits).
Cf. A362953 (same for 3rd powers), A362954 (same for 4th powers).
Sequence in context: A014979 A356690 A376864 * A275458 A353111 A229671
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, June 15 2023
STATUS
approved