login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362948
Numbers whose sum of (distinct) prime divisors (A008472) equals 5.
2
5, 6, 12, 18, 24, 25, 36, 48, 54, 72, 96, 108, 125, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 625, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3125, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664, 12288
OFFSET
1,1
LINKS
FORMULA
Union of A000351 = {5^k ; k > 0} and A033845 = {2^j*3^k, j,k > 0}.
Sum_{n>=1} 1/a(n) = 3/4. - Amiram Eldar, Jul 27 2023
MATHEMATICA
seq[max_] := Union[Join[5^Range[Floor[Log[5, max]]], Flatten@ Table[2^i*3^j, {i, 1, Log2[max]}, {j, 1, Log[3, max/2^i]}]]]; seq[13000] (* Amiram Eldar, Jul 27 2023 *)
PROG
(PARI) select( {is_A362948(n)=vecsum(factor(n, 0)[, 1])==5}, [1..11^4]) \\ alternatively: [n | n<-[1..11^4], A008472(n)==5]
CROSSREFS
Cf. A008472 (sopf), A000351 (5^n), A033845 (2^m*3^n).
Sequence in context: A127306 A319184 A231959 * A168145 A276407 A022310
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Jul 20 2023
STATUS
approved