login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178420 Partial sums of floor(2^n/3). 3
0, 1, 3, 8, 18, 39, 81, 166, 336, 677, 1359, 2724, 5454, 10915, 21837, 43682, 87372, 174753, 349515, 699040, 1398090, 2796191, 5592393, 11184798, 22369608, 44739229, 89478471, 178956956, 357913926, 715827867, 1431655749, 2863311514 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Essentially the same as A011377: 0 followed by the terms of A011377. - Joerg Arndt, Apr 22 2016

Partial sums of A000975(n-1).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.

Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,2).

FORMULA

a(n) = A011377(n-1) for n >= 1. - Joerg Arndt, Apr 22 2016

a(n) = round((8*2^n - 6*n - 9)/12).

a(n) = floor((4*2^n - 3*n - 4)/6).

a(n) = ceiling((4*2^n - 3*n - 5)/6).

a(n) = round((4*2^n - 3*n - 4)/6).

a(n) = a(n-2) + 2^(n-1) - 1, n > 2.

From Bruno Berselli, Jan 15 2011: (Start)

a(n) = (8*2^n - 6*n - 9 + (-1)^n)/12.

G.f.: x^2/((1+x)*(1-2*x)*(1-x)^2). (End)

G.f.: Q(0)/(3*(1-x)^2), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013

a(n) = 2*a(n-1) + floor(n/2) for n > 1. - Bruno Berselli, Apr 30 2014

EXAMPLE

a(5) = 0 + 1 + 2 + 5 + 10 = 18.

MAPLE

seq(round((4*2^n-3*n-4)/6), n=1..50)

MATHEMATICA

f[n_] := Floor[(4 2^n - 3 n - 4)/6]; f[Range[60]] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2011 *)

CoefficientList[Series[x / ((1 + x) (1 - 2 x) (1 - x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)

LinearRecurrence[{3, -1, -3, 2}, {0, 1, 3, 8}, 40] (* or *) Accumulate[ Table[ Floor[ 2^n/3], {n, 40}]] (* Harvey P. Dale, Dec 24 2015 *)

PROG

(MAGMA) [Floor((4*2^n-3*n-4)/6): n in [1..30]]; // Vincenzo Librandi, Jun 23 2011

(PARI) a(n)=(4<<n-3*n-4)\6 \\ Charles R Greathouse IV, Jul 31 2013

CROSSREFS

Cf. A000975.

Sequence in context: A128552 A238361 A011377 * A036385 A196534 A317188

Adjacent sequences:  A178417 A178418 A178419 * A178421 A178422 A178423

KEYWORD

nonn,easy

AUTHOR

Mircea Merca, Dec 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 12:51 EST 2020. Contains 338947 sequences. (Running on oeis4.)