login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126885
T(n,k) = n*T(n,k-1) + k, with T(n,1) = 1, square array read by ascending antidiagonals (n >= 0, k >= 1).
2
1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 11, 10, 5, 1, 6, 18, 26, 15, 6, 1, 7, 27, 58, 57, 21, 7, 1, 8, 38, 112, 179, 120, 28, 8, 1, 9, 51, 194, 453, 543, 247, 36, 9, 1, 10, 66, 310, 975, 1818, 1636, 502, 45, 10, 1, 11, 83, 466, 1865, 4881, 7279, 4916, 1013, 55, 11
OFFSET
0,3
FORMULA
T(1,k) = k*(k + 1)/2, and T(n,k) = (k - (k + 1)*n + n^(k + 1))/(n^2 - 2*n + 1) elsewhere.
T(n,k) = third entry in the vector M^k * (1, 0, 0), where M is the following 3 X 3 matrix:
1, 0, 0
1, 1, 0
1, 1, n.
EXAMPLE
Square array begins:
n\k | 1 2 3 4 5 6 7 8 ...
-------------------------------------------------
0 | 1 2 3 4 5 6 7 8 ... A000027
1 | 1 3 6 10 15 21 28 36 ... A000217
2 | 1 4 11 26 57 120 247 502 ... A000295
3 | 1 5 18 58 179 543 1636 4916 ... A000340
4 | 1 6 27 112 453 1818 7279 29124 ... A014825
5 | 1 7 38 194 975 4881 24412 122068 ... A014827
6 | 1 8 51 310 1865 11196 67183 403106 ... A014829
7 | 1 9 66 466 3267 22875 160132 1120932 ... A014830
8 | 1 10 83 668 5349 42798 342391 2739136 ... A014831
...
PROG
(Maxima)
T(n, k) := if k = 1 then 1 else n*T(n, k - 1) + k$
create_list(T(n - k + 1, k), n, 0, 20, k, 1, n + 1);
/* Franck Maminirina Ramaharo, Jan 26 2019 */
CROSSREFS
Antidiagonal sums: A134195. - Gary W. Adamson, Oct 12 2007
Sequence in context: A034356 A075195 A293311 * A239986 A285548 A130305
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Dec 30 2006
EXTENSIONS
Edited and name clarified by Franck Maminirina Ramaharo, Jan 26 2019
STATUS
approved