login
A126883
a(n) = (2^0)*(2^1)*(2^2)*(2^3)...(2^n)-1 = 2^T(n) - 1 where T(n) = A000217(n) is the n-th triangular number.
4
0, 1, 7, 63, 1023, 32767, 2097151, 268435455, 68719476735, 35184372088831, 36028797018963967, 73786976294838206463, 302231454903657293676543, 2475880078570760549798248447, 40564819207303340847894502572031, 1329227995784915872903807060280344575
OFFSET
0,3
COMMENTS
For n > 2, a(n) and a(n-1) share at least one prime factor.
Shows how many patterns can be created with 1-color thread while sewing on a button with buttonholes located on the vertices of a convex n-gon. - Ivan N. Ianakiev, Feb 09 2012
REFERENCES
Masha Gessen, Perfect Rigor, A Genius and the Mathematical Breakthrough of the Century, Houghton Mifflin Harcourt, 2009, page 38.
LINKS
FORMULA
a(n) = A006125(n+1) - 1. - Zerinvary Lajos, Jun 12 2007
MAPLE
seq(2^(binomial(n+1, 2))-1, n=0..12); # Zerinvary Lajos, Jun 12 2007
MATHEMATICA
FoldList[Times, 2^Range[0, 20]]-1 (* Harvey P. Dale, Sep 09 2015 *)
2^Accumulate[Range[0, 20]]-1 (* Harvey P. Dale, Jun 03 2019 *)
PROG
(GAP) List([-1..15], n->2^(Binomial(2+n, n))-1); # Muniru A Asiru, Feb 21 2019
CROSSREFS
Sequence in context: A376324 A152797 A345383 * A137810 A316577 A036287
KEYWORD
nonn
AUTHOR
Marco Matosic, Dec 29 2006
EXTENSIONS
Corrected and extended by Harvey P. Dale, Sep 09 2015
STATUS
approved