login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126883
a(n) = (2^0)*(2^1)*(2^2)*(2^3)...(2^n)-1 = 2^T(n) - 1 where T(n) = A000217(n) is the n-th triangular number.
4
0, 1, 7, 63, 1023, 32767, 2097151, 268435455, 68719476735, 35184372088831, 36028797018963967, 73786976294838206463, 302231454903657293676543, 2475880078570760549798248447, 40564819207303340847894502572031, 1329227995784915872903807060280344575
OFFSET
0,3
COMMENTS
For n > 2, a(n) and a(n-1) share at least one prime factor.
Shows how many patterns can be created with 1-color thread while sewing on a button with buttonholes located on the vertices of a convex n-gon. - Ivan N. Ianakiev, Feb 09 2012
REFERENCES
Masha Gessen, Perfect Rigor, A Genius and the Mathematical Breakthrough of the Century, Houghton Mifflin Harcourt, 2009, page 38.
LINKS
FORMULA
a(n) = A006125(n+1) - 1. - Zerinvary Lajos, Jun 12 2007
MAPLE
seq(2^(binomial(n+1, 2))-1, n=0..12); # Zerinvary Lajos, Jun 12 2007
MATHEMATICA
FoldList[Times, 2^Range[0, 20]]-1 (* Harvey P. Dale, Sep 09 2015 *)
2^Accumulate[Range[0, 20]]-1 (* Harvey P. Dale, Jun 03 2019 *)
PROG
(GAP) List([-1..15], n->2^(Binomial(2+n, n))-1); # Muniru A Asiru, Feb 21 2019
CROSSREFS
Sequence in context: A376324 A152797 A345383 * A137810 A316577 A036287
KEYWORD
nonn
AUTHOR
Marco Matosic, Dec 29 2006
EXTENSIONS
Corrected and extended by Harvey P. Dale, Sep 09 2015
STATUS
approved