login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126884
a(n) = (2^0)*(2^1)*(2^2)*(2^3)...(2^n)+1 = 2^T_n+1 (cf. A000217).
1
2, 3, 9, 65, 1025, 32769, 2097153, 268435457, 68719476737, 35184372088833, 36028797018963969, 73786976294838206465, 302231454903657293676545, 2475880078570760549798248449, 40564819207303340847894502572033, 1329227995784915872903807060280344577, 87112285931760246646623899502532662132737
OFFSET
0,1
COMMENTS
For n>1 every odd/even pair share at least one factor.
FORMULA
a(n) = 2^A000217(n)+1. - Michel Marcus, Jul 16 2013
a(n) = A006125(n+1)+1. - Alois P. Heinz, Jun 20 2020
MAPLE
a:= n-> 2^(n*(n+1)/2)+1:
seq(a(n), n=0..16); # Alois P. Heinz, Jun 20 2020
MATHEMATICA
Table[Times@@(2^Range[0, n])+1, {n, 0, 20}] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(PARI) a(n) = prod(k=0, n, 2^k) + 1 \\ Michel Marcus, Jul 16 2013
CROSSREFS
Sequence in context: A181273 A270394 A120032 * A054544 A269993 A132537
KEYWORD
nonn,easy
AUTHOR
Marco Matosic, Dec 29 2006
EXTENSIONS
a(11) corrected and a(14-16) from Georg Fischer, Jun 20 2020
STATUS
approved