login
A036287
a(n) = ((2^(3*(2^n))) - 1).
2
7, 63, 4095, 16777215, 281474976710655, 79228162514264337593543950335, 6277101735386680763835789423207666416102355444464034512895, 39402006196394479212279040100143613805079739270465446667948293404245721771497210611414266254884915640806627990306815
OFFSET
0,1
COMMENTS
Also "Denominators for Fibonacci Binary Verticals viewed as Periodic Binary Fractions": The cycle of bit-n of Fibonacci numbers in binary is (3*(2^n)). Looking from top to bottom they can be viewed as non-finite periodic binary fractions, with each fraction computed as the n-th element of A036286 divided by the n-th element of A036287.
MATHEMATICA
2^(3 2^Range[0, 10])-1 (* Harvey P. Dale, Jun 19 2011 *)
PROG
(PARI) A036287(n) = ((2^(3*(2^n))) - 1); \\ Antti Karttunen, Jan 14 2024
CROSSREFS
Sequence in context: A126883 A137810 A316577 * A116231 A195630 A136955
KEYWORD
nonn,frac
STATUS
approved