login
A036286
Periodic vertical binary vectors of Fibonacci numbers, topmost bits being most significant.
3
3, 6, 90, 202474, 802914372650, 124876754670311211270396330, 2261740218128437766312179308277308483058208661638110890, 7527129205899945471753233641719262207829849606092782843679109711117799287001392666047916596823438974998183293610
OFFSET
0,1
FORMULA
a(n) = Sum_{k=0..A007283(n)-1} ([A000045((A007283(n)-1)-k)/(2^n)] mod 2) * 2^k, where [] stands for floor function.
EXAMPLE
When Fibonacci numbers are written in binary (see A004685), under each other as:
0000000 (0)
0000001 (1)
0000001 (1)
0000010 (2)
0000011 (3)
0000101 (5)
0001000 (8)
0001101 (13)
0010101 (21)
0100010 (34)
0110111 (55)
1011001 (89)
it can be seen that the bits in the n-th column from right repeat after the period of A007283(n): 3, 6, 12, 24, ... (see also A001175). This sequence is formed from those bits: 011, binary for 3, thus a(0) = 3. 000110, binary for 6, thus a(1) = 6, 000001011010, binary for 90, thus a(2) = 90. Cf. A036284.
CROSSREFS
See comments at A036284. a(n)/A036287(n) can be interpreted as fractions.
Sequence in context: A363410 A211896 A299433 * A084008 A092680 A101574
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Nov 01 1998. Entry revised Dec 29 2007.
STATUS
approved