login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299433
Denominators of coefficients in S(x) where: C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 2*x*C(x).
6
1, 1, 1, 3, 6, 90, 810, 15120, 68040, 24494400, 1020600, 12933043200, 9093546000, 14122883174400, 2482538058000, 76263569141760000, 59580913392000, 15557768104919040000, 14357510604637200000, 28377369023372328960000, 8183781044643204000000, 3539793011975464314470400000, 270064774473225732000000, 13677760198273194111113625600000
OFFSET
0,4
FORMULA
The functions C = C(x) and S = S(x) satisfy:
(1) sqrt(C) - sqrt(S) = 1.
(2a) C'*sqrt(S) = S'*sqrt(C) = 2*x*C.
(2b) C' = 2*x*C/sqrt(S).
(2c) S' = 2*x*sqrt(C).
(3a) C = 1 + Integral 2*x*C/sqrt(S) dx.
(3b) S = Integral 2*x*sqrt(C) dx.
(4a) sqrt(C) = exp( Integral x/(sqrt(C) - 1) dx ).
(4b) sqrt(S) = exp( Integral x/sqrt(S) dx ) - 1.
(5a) C - S = exp( Integral 2*x*C/(C*sqrt(S) + S*sqrt(C)) dx ).
(5b) C - S = exp( Integral C'*S'/(C*S' + S*C') dx).
(6a) sqrt(C) = exp( sqrt(C) - 1 - x^2/2 ).
(6b) sqrt(C) = 1 + x^2/2 + Integral x/(sqrt(C) - 1) dx.
EXAMPLE
G.f.: S(x) = x^2 + 2/3*x^3 + 1/6*x^4 + 1/90*x^5 - 1/810*x^6 + 1/15120*x^7 + 1/68040*x^8 - 139/24494400*x^9 + 1/1020600*x^10 - 571/12933043200*x^11 + ...
Related power series begin:
C(x) = 1 + 2*x + 5/3*x^2 + 13/18*x^3 + 43/270*x^4 + 5/432*x^5 - 19/17010*x^6 + 41/2721600*x^7 + 1/40824*x^8 - 7243/1175731200*x^9 + 923/1515591000*x^10 + ...
sqrt(C) = 1 + x + 1/3*x^2 + 1/36*x^3 - 1/270*x^4 + 1/4320*x^5 + 1/17010*x^6 - 139/5443200*x^7 + 1/204120*x^8 - 571/2351462400*x^9 - 281/1515591000*x^10 + ... + A005447(n)/A005446(n)*x^n + ...
MATHEMATICA
terms = 30; c[x_] = Assuming[x > 0, ProductLog[-1, -Exp[-1 - x^2/2]]^2 + O[x]^terms]; Integrate[2*x*Sqrt[c[x]] + O[x]^terms, x] // CoefficientList[#, x] & // Denominator (* Jean-François Alcover, Feb 22 2018 *)
PROG
(PARI) {a(n) = my(C=1, S=x^2); for(i=0, n, C = (1 + sqrt(S +O(x^(n+2))))^2; S = intformal( 2*x*sqrt(C) ) ); denominator(polcoeff(S, n))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A299432 (numerators in S), A299430/A299431 (C), A005447/A005446 (sqrt(C)).
Sequence in context: A157197 A363410 A211896 * A036286 A084008 A092680
KEYWORD
nonn,frac
AUTHOR
Paul D. Hanna, Feb 09 2018
STATUS
approved