Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 24 2024 08:25:05
%S 1,1,1,3,6,90,810,15120,68040,24494400,1020600,12933043200,9093546000,
%T 14122883174400,2482538058000,76263569141760000,59580913392000,
%U 15557768104919040000,14357510604637200000,28377369023372328960000,8183781044643204000000,3539793011975464314470400000,270064774473225732000000,13677760198273194111113625600000
%N Denominators of coefficients in S(x) where: C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 2*x*C(x).
%F The functions C = C(x) and S = S(x) satisfy:
%F (1) sqrt(C) - sqrt(S) = 1.
%F (2a) C'*sqrt(S) = S'*sqrt(C) = 2*x*C.
%F (2b) C' = 2*x*C/sqrt(S).
%F (2c) S' = 2*x*sqrt(C).
%F (3a) C = 1 + Integral 2*x*C/sqrt(S) dx.
%F (3b) S = Integral 2*x*sqrt(C) dx.
%F (4a) sqrt(C) = exp( Integral x/(sqrt(C) - 1) dx ).
%F (4b) sqrt(S) = exp( Integral x/sqrt(S) dx ) - 1.
%F (5a) C - S = exp( Integral 2*x*C/(C*sqrt(S) + S*sqrt(C)) dx ).
%F (5b) C - S = exp( Integral C'*S'/(C*S' + S*C') dx).
%F (6a) sqrt(C) = exp( sqrt(C) - 1 - x^2/2 ).
%F (6b) sqrt(C) = 1 + x^2/2 + Integral x/(sqrt(C) - 1) dx.
%e G.f.: S(x) = x^2 + 2/3*x^3 + 1/6*x^4 + 1/90*x^5 - 1/810*x^6 + 1/15120*x^7 + 1/68040*x^8 - 139/24494400*x^9 + 1/1020600*x^10 - 571/12933043200*x^11 + ...
%e Related power series begin:
%e C(x) = 1 + 2*x + 5/3*x^2 + 13/18*x^3 + 43/270*x^4 + 5/432*x^5 - 19/17010*x^6 + 41/2721600*x^7 + 1/40824*x^8 - 7243/1175731200*x^9 + 923/1515591000*x^10 + ...
%e sqrt(C) = 1 + x + 1/3*x^2 + 1/36*x^3 - 1/270*x^4 + 1/4320*x^5 + 1/17010*x^6 - 139/5443200*x^7 + 1/204120*x^8 - 571/2351462400*x^9 - 281/1515591000*x^10 + ... + A005447(n)/A005446(n)*x^n + ...
%t terms = 30; c[x_] = Assuming[x > 0, ProductLog[-1, -Exp[-1 - x^2/2]]^2 + O[x]^terms]; Integrate[2*x*Sqrt[c[x]] + O[x]^terms, x] // CoefficientList[#, x] & // Denominator (* _Jean-François Alcover_, Feb 22 2018 *)
%o (PARI) {a(n) = my(C=1, S=x^2); for(i=0,n, C = (1 + sqrt(S +O(x^(n+2))))^2; S = intformal( 2*x*sqrt(C) ) ); denominator(polcoeff(S,n))}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A299432 (numerators in S), A299430/A299431 (C), A005447/A005446 (sqrt(C)).
%K nonn,frac
%O 0,4
%A _Paul D. Hanna_, Feb 09 2018