login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211896
G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^4 * x^n/n ), where Jacobsthal(n) = A001045(n).
4
1, 3, 6, 90, 723, 10689, 130428, 1862580, 25594611, 368313993, 5289203262, 77279744418, 1134460916361, 16798605635235, 249994099311288, 3740771822960664, 56208829313956998, 847934859174601650, 12834366187138678836, 194855374723972622988, 2966358133685609559042
OFFSET
0,2
COMMENTS
Given g.f. A(x), note that A(x)^(1/3) is not an integer series.
FORMULA
G.f.: ( (1+2*x)^4*(1+8*x)^4 / ((1-x)*(1-4*x)^6*(1-16*x)) )^(1/27).
G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^4 / 27 * x^n/n ).
a(n) ~ 3^(5/27) * 2^(4*n) / (5^(1/27) * Gamma(1/27) * n^(26/27)). - Vaclav Kotesovec, Oct 18 2020
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 90*x^3 + 723*x^4 + 10689*x^5 + 130428*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^4*x^3/3 + 5^4*x^4/4 + 11^4*x^5/5 + 21^4*x^6/6 + 43^4*x^7/7 +...+ Jacobsthal(n)^4*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
PROG
(PARI) {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)), n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^4*x^k/k)+x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(((1+2*x)^4*(1+8*x)^4/((1-x)*(1-4*x)^6*(1-16*x))+x*O(x^n))^(1/27), n)}
CROSSREFS
Cf. A211893, A211894, A211895, A207969, A001045 (Jacobsthal).
Sequence in context: A357245 A157197 A363410 * A299433 A036286 A084008
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 25 2012
STATUS
approved