login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^4 * x^n/n ), where Jacobsthal(n) = A001045(n).
4

%I #14 Oct 18 2020 05:02:43

%S 1,3,6,90,723,10689,130428,1862580,25594611,368313993,5289203262,

%T 77279744418,1134460916361,16798605635235,249994099311288,

%U 3740771822960664,56208829313956998,847934859174601650,12834366187138678836,194855374723972622988,2966358133685609559042

%N G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^4 * x^n/n ), where Jacobsthal(n) = A001045(n).

%C Given g.f. A(x), note that A(x)^(1/3) is not an integer series.

%F G.f.: ( (1+2*x)^4*(1+8*x)^4 / ((1-x)*(1-4*x)^6*(1-16*x)) )^(1/27).

%F G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^4 / 27 * x^n/n ).

%F a(n) ~ 3^(5/27) * 2^(4*n) / (5^(1/27) * Gamma(1/27) * n^(26/27)). - _Vaclav Kotesovec_, Oct 18 2020

%e G.f.: A(x) = 1 + 3*x + 6*x^2 + 90*x^3 + 723*x^4 + 10689*x^5 + 130428*x^6 +...

%e such that

%e log(A(x))/3 = x + x^2/2 + 3^4*x^3/3 + 5^4*x^4/4 + 11^4*x^5/5 + 21^4*x^6/6 + 43^4*x^7/7 +...+ Jacobsthal(n)^4*x^n/n +...

%e Jacobsthal numbers begin:

%e A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].

%o (PARI) {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)),n)}

%o {a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^4*x^k/k)+x*O(x^n)), n)}

%o for(n=0, 30, print1(a(n), ", "))

%o (PARI) {a(n)=polcoeff(((1+2*x)^4*(1+8*x)^4/((1-x)*(1-4*x)^6*(1-16*x))+x*O(x^n))^(1/27),n)}

%Y Cf. A211893, A211894, A211895, A207969, A001045 (Jacobsthal).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Apr 25 2012