OFFSET
0,2
COMMENTS
Given g.f. A(x), note that A(x)^(1/3) is not an integer series.
FORMULA
G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^n / 3^(n-1) * x^n/n ).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 6*x^2 + 36*x^3 + 561*x^4 + 98211*x^5 + 43176384*x^6 +...
such that
log(A(x))/3 = x + x^2/2 + 3^3*x^3/3 + 5^4*x^4/4 + 11^5*x^5/5 + 21^6*x^6/6 + 43^7*x^7/7 +...+ Jacobsthal(n)^n*x^n/n +...
Jacobsthal numbers begin:
A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].
PROG
(PARI) {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)), n)}
{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^k*x^k/k)+x*O(x^n)), n)}
for(n=0, 16, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 24 2012
STATUS
approved