login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211892 G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n^2) * x^n/n ), where Jacobsthal(n) = A001045(n). 4
1, 3, 12, 198, 16962, 6762210, 11473594848, 80455865485692, 2306084412391039038, 268657100633050977422322, 126765866001055606588876061400, 241678197713843578271875740922972788, 1858396158245858742065123341776166504084452 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Given g.f. A(x), note that A(x)^(1/3) is not an integer series.

LINKS

Table of n, a(n) for n=0..12.

FORMULA

G.f.: (1+x) * exp( Sum_{n>=1} 2^(n^2) * x^n/n ).

a(n) = A155200(n) + A155200(n-1).

EXAMPLE

G.f.: A(x) = 1 + 3*x + 12*x^2 + 198*x^3 + 16962*x^4 + 6762210*x^5 +...

such that

log(A(x))/3 = x + 5*x^2/2 + 171*x^3/3 + 21845*x^4/4 + 11184811*x^5/5 + 22906492245*x^6/6 + 187649984473771*x^7/7 +...+ Jacobsthal(n^2)*x^n/n +...

Jacobsthal numbers begin:

A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,...].

PROG

(PARI) {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)), n)}

{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k^2)*x^k/k)+x*O(x^n)), n)}

for(n=0, 16, print1(a(n), ", "))

CROSSREFS

Cf. A211893, A211894, A211895, A211896, A207972, A001045, A155200.

Cf. A231279 (Jacobsthal(n^2)).

Sequence in context: A061960 A120606 A089428 * A063801 A160320 A321603

Adjacent sequences:  A211889 A211890 A211891 * A211893 A211894 A211895

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 24 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 22:42 EST 2019. Contains 329987 sequences. (Running on oeis4.)