login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211894 G.f.: exp( Sum_{n>=1} 3 * Jacobsthal(n)^2 * x^n/n ), where Jacobsthal(n) = A001045(n). 4
1, 3, 6, 18, 57, 195, 684, 2460, 8970, 33102, 123204, 461868, 1741410, 6597750, 25099584, 95822928, 366943881, 1408947675, 5422742910, 20915079258, 80820382425, 312839889219, 1212812010804, 4708415402772, 18302630040504, 71230126892088, 277514015733168 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Given g.f. A(x), note that A(x)^(1/3) is not an integer series.

LINKS

Table of n, a(n) for n=0..26.

FORMULA

G.f.: (1+2*x)^(2/3) / ((1-x)*(1-4*x))^(1/3).

G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^2 / 3 * x^n/n ).

EXAMPLE

G.f.: A(x) = 1 + 3*x + 6*x^2 + 18*x^3 + 57*x^4 + 195*x^5 + 684*x^6 +...

such that

log(A(x))/3 = x + x^2/2 + 3^2*x^3/3 + 5^2*x^4/4 + 11^2*x^5/5 + 21^2*x^6/6 + 43^2*x^7/7 +...+ Jacobsthal(n)^2*x^n/n +...

Jacobsthal numbers begin:

A001045 = [1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,...].

PROG

(PARI) {Jacobsthal(n)=polcoeff(x/(1-x-2*x^2+x*O(x^n)), n)}

{a(n)=polcoeff(exp(sum(k=1, n, 3*Jacobsthal(k)^2*x^k/k)+x*O(x^n)), n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) {a(n)=polcoeff(((1+2*x)^2/((1-x)*(1-4*x) +x*O(x^n)))^(1/3), n)}

CROSSREFS

Cf. A211893, A211895, A211896, A054888, A207969, A001045 (Jacobsthal).

Sequence in context: A049368 A152733 A215455 * A173109 A165200 A215635

Adjacent sequences:  A211891 A211892 A211893 * A211895 A211896 A211897

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 25 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 13:55 EST 2020. Contains 331113 sequences. (Running on oeis4.)