login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A068776
a(0) = 1; for n > 0, a(n) is the smallest triangular number which is a (proper) multiple of a(n-1).
5
1, 3, 6, 36, 2016, 1493856, 579616128, 11013286048128, 1004811205553955491328, 1897191992473259952000123882626029056, 5012064437680248664058937311304485563631765718940918773832320000
OFFSET
0,2
LINKS
EXAMPLE
a(2) = 6, since 6 = 2*a(1) and 6 is a triangular number.
MATHEMATICA
pm1[{k_}] := {1, k-1}; pm1[lst_] := Module[{a, m, v}, a=lst[[1]]; m=Times@@Rest[lst]; v=pm1[Rest[lst]]; Union[ChineseRemainder[{1, #}, {a, m}]&/@v, ChineseRemainder[{-1, #}, {a, m}]&/@v]]; nexttri[1]=3; nexttri[n_] := Module[{s}, s=(pm1[Power@@#&/@FactorInteger[4n]]^2-1)/8; For[i=1, True, i++, If[s[[i]]>n, Return[s[[i]]]]]]; a[0]=1; a[n_] := a[n]=nexttri[a[n-1]]; (* First do <<NumberTheory`NumberTheoryFunctions`. If lst is a list of relatively prime integers >= 3, pm1[lst] is the list of numbers less than their product and == 1 or -1 (mod every element of lst). nexttri[n] is the smallest triangular number >n and divisible by n. *)
PROG
(PARI) {a068776(m)=local(k, q, n); k=1; q=k*(k+1)/2; while(q<m, n=q; print1(n, ", "); k++; q=q+k; while(q<m&&q%n>0, k++; q=q+k))}
(Python)
from itertools import islice
from sympy import sqrt_mod_iter
def A068776_gen(): # generator of terms
a = 8
while True:
yield a>>3
b = a+1
for d in sqrt_mod_iter(1, a):
if d==1 or d**2-1 == a:
d += a
if d&1 and d < b:
b = d
a = b**2-1
A068776_list = list(islice(A068776_gen(), 12)) # Chai Wah Wu, May 05 2024
CROSSREFS
Sequence in context: A174666 A211893 A093800 * A355544 A359968 A025596
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Mar 01 2002
EXTENSIONS
Edited by Dean Hickerson, Mar 09 2002
STATUS
approved