The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A357245 E.g.f. satisfies A(x) * log(A(x)) = 3 * (exp(x) - 1). 1
 1, 3, -6, 84, -1599, 42906, -1477716, 62171661, -3090518556, 177237143040, -11518529575857, 836601742598628, -67156626492464064, 5904119985344031639, -564188922815428792914, 58225175660113940932032, -6453955474121138652732903, 764716767229825444834522086 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Eric Weisstein's World of Mathematics, Lambert W-Function. FORMULA a(n) = Sum_{k=0..n} 3^k * (-k+1)^(k-1) * Stirling2(n,k). E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (3 * (exp(x) - 1))^k / k!. E.g.f.: A(x) = exp( LambertW(3 * (exp(x) - 1)) ). E.g.f.: A(x) = 3 * (exp(x) - 1)/LambertW(3 * (exp(x) - 1)). PROG (PARI) a(n) = sum(k=0, n, 3^k*(-k+1)^(k-1)*stirling(n, k, 2)); (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(3*(exp(x)-1))^k/k!))) (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(3*(exp(x)-1))))) (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(3*(exp(x)-1)/lambertw(3*(exp(x)-1)))) CROSSREFS Cf. A349583, A357244. Sequence in context: A213138 A349875 A331403 * A157197 A211896 A299433 Adjacent sequences: A357242 A357243 A357244 * A357246 A357247 A357248 KEYWORD sign AUTHOR Seiichi Manyama, Sep 19 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 01:41 EST 2023. Contains 359905 sequences. (Running on oeis4.)