|
|
A357245
|
|
E.g.f. satisfies A(x) * log(A(x)) = 3 * (exp(x) - 1).
|
|
1
|
|
|
1, 3, -6, 84, -1599, 42906, -1477716, 62171661, -3090518556, 177237143040, -11518529575857, 836601742598628, -67156626492464064, 5904119985344031639, -564188922815428792914, 58225175660113940932032, -6453955474121138652732903, 764716767229825444834522086
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..17.
Eric Weisstein's World of Mathematics, Lambert W-Function.
|
|
FORMULA
|
a(n) = Sum_{k=0..n} 3^k * (-k+1)^(k-1) * Stirling2(n,k).
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (3 * (exp(x) - 1))^k / k!.
E.g.f.: A(x) = exp( LambertW(3 * (exp(x) - 1)) ).
E.g.f.: A(x) = 3 * (exp(x) - 1)/LambertW(3 * (exp(x) - 1)).
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, 3^k*(-k+1)^(k-1)*stirling(n, k, 2));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(3*(exp(x)-1))^k/k!)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(3*(exp(x)-1)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(3*(exp(x)-1)/lambertw(3*(exp(x)-1))))
|
|
CROSSREFS
|
Cf. A349583, A357244.
Sequence in context: A213138 A349875 A331403 * A157197 A211896 A299433
Adjacent sequences: A357242 A357243 A357244 * A357246 A357247 A357248
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Seiichi Manyama, Sep 19 2022
|
|
STATUS
|
approved
|
|
|
|