OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} (-1)^(n - k) * (2*k - 1)!! / k!.
D-finite with recurrence: a(n) +(-n+1)*a(n-1) -(2*n-1)*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 25 2020
a(n) ~ 2^(n + 3/2) * n^n / (3*exp(n)). - Vaclav Kotesovec, Jan 26 2020
MATHEMATICA
nmax = 20; CoefficientList[Series[1/((1 + x) Sqrt[1 - 2 x]), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^(n - k) (2 k - 1)!!/k!, {k, 0, n}], {n, 0, 20}]
PROG
(PARI) a(n) = {n! * sum(k=0, n, (-1)^(n - k) * (2*k)! / (2^k*k!^2))} \\ Andrew Howroyd, Jan 16 2020
(PARI) seq(n) = {Vec(serlaplace(1 / ((1 + x) * sqrt(1 - 2*x + O(x*x^n)))))} \\ Andrew Howroyd, Jan 16 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 16 2020
STATUS
approved