The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331403 E.g.f.: 1 / ((1 + x) * sqrt(1 - 2*x)). 0
 1, 0, 3, 6, 81, 540, 7155, 85050, 1346625, 22339800, 431331075, 9004668750, 208178118225, 5199538043700, 140664514065075, 4080315642653250, 126613733680058625, 4180226398201854000, 146399020309066399875, 5419213146765629961750, 211446723837565171580625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) = n! * Sum_{k=0..n} (-1)^(n - k) * (2*k - 1)!! / k!. D-finite with recurrence: a(n) +(-n+1)*a(n-1) -(2*n-1)*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 25 2020 a(n) ~ 2^(n + 3/2) * n^n / (3*exp(n)). - Vaclav Kotesovec, Jan 26 2020 MATHEMATICA nmax = 20; CoefficientList[Series[1/((1 + x) Sqrt[1 - 2 x]), {x, 0, nmax}], x] Range[0, nmax]! Table[n! Sum[(-1)^(n - k) (2 k - 1)!!/k!, {k, 0, n}], {n, 0, 20}] PROG (PARI) a(n) = {n! * sum(k=0, n, (-1)^(n - k) * (2*k)! / (2^k*k!^2))} \\ Andrew Howroyd, Jan 16 2020 (PARI) seq(n) = {Vec(serlaplace(1 / ((1 + x) * sqrt(1 - 2*x + O(x*x^n)))))} \\ Andrew Howroyd, Jan 16 2020 CROSSREFS Cf. A001147, A005359, A034430, A052585, A317618. Sequence in context: A350992 A213138 A349875 * A157197 A211896 A299433 Adjacent sequences:  A331400 A331401 A331402 * A331404 A331405 A331406 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 16 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 04:43 EDT 2022. Contains 354074 sequences. (Running on oeis4.)