login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357244
E.g.f. satisfies A(x) * log(A(x)) = 2 * (exp(x) - 1).
1
1, 2, -2, 22, -266, 4614, -102442, 2777030, -88914730, 3283693254, -137408080298, 6425417730758, -332055079469610, 18792899306652358, -1156017201432075946, 76796076655220486854, -5479395288838822143786, 417905042599836811225798, -33928512587303405767179178
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} 2^k * (-k+1)^(k-1) * Stirling2(n,k).
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (2 * (exp(x) - 1))^k / k!.
E.g.f.: A(x) = exp( LambertW(2 * (exp(x) - 1)) ).
E.g.f.: A(x) = 2 * (exp(x) - 1)/LambertW(2 * (exp(x) - 1)).
MATHEMATICA
nmax = 18; A[_] = 1;
Do[A[x_] = Exp[(2*(Exp[x] - 1))/A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, 2^k*(-k+1)^(k-1)*stirling(n, k, 2));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(2*(exp(x)-1))^k/k!)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(2*(exp(x)-1)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(2*(exp(x)-1)/lambertw(2*(exp(x)-1))))
CROSSREFS
Cf. A356908.
Sequence in context: A118326 A212847 A087405 * A001012 A040082 A014358
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 19 2022
STATUS
approved