|
|
A357244
|
|
E.g.f. satisfies A(x) * log(A(x)) = 2 * (exp(x) - 1).
|
|
1
|
|
|
1, 2, -2, 22, -266, 4614, -102442, 2777030, -88914730, 3283693254, -137408080298, 6425417730758, -332055079469610, 18792899306652358, -1156017201432075946, 76796076655220486854, -5479395288838822143786, 417905042599836811225798, -33928512587303405767179178
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..18.
Eric Weisstein's World of Mathematics, Lambert W-Function.
|
|
FORMULA
|
a(n) = Sum_{k=0..n} 2^k * (-k+1)^(k-1) * Stirling2(n,k).
E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (2 * (exp(x) - 1))^k / k!.
E.g.f.: A(x) = exp( LambertW(2 * (exp(x) - 1)) ).
E.g.f.: A(x) = 2 * (exp(x) - 1)/LambertW(2 * (exp(x) - 1)).
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, 2^k*(-k+1)^(k-1)*stirling(n, k, 2));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(2*(exp(x)-1))^k/k!)))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(2*(exp(x)-1)))))
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(2*(exp(x)-1)/lambertw(2*(exp(x)-1))))
|
|
CROSSREFS
|
Cf. A349583, A357245.
Cf. A356908.
Sequence in context: A118326 A212847 A087405 * A001012 A040082 A014358
Adjacent sequences: A357241 A357242 A357243 * A357245 A357246 A357247
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Seiichi Manyama, Sep 19 2022
|
|
STATUS
|
approved
|
|
|
|