login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A357244 E.g.f. satisfies A(x) * log(A(x)) = 2 * (exp(x) - 1). 1
1, 2, -2, 22, -266, 4614, -102442, 2777030, -88914730, 3283693254, -137408080298, 6425417730758, -332055079469610, 18792899306652358, -1156017201432075946, 76796076655220486854, -5479395288838822143786, 417905042599836811225798, -33928512587303405767179178 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..18.

Eric Weisstein's World of Mathematics, Lambert W-Function.

FORMULA

a(n) = Sum_{k=0..n} 2^k * (-k+1)^(k-1) * Stirling2(n,k).

E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (2 * (exp(x) - 1))^k / k!.

E.g.f.: A(x) = exp( LambertW(2 * (exp(x) - 1)) ).

E.g.f.: A(x) = 2 * (exp(x) - 1)/LambertW(2 * (exp(x) - 1)).

PROG

(PARI) a(n) = sum(k=0, n, 2^k*(-k+1)^(k-1)*stirling(n, k, 2));

(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(2*(exp(x)-1))^k/k!)))

(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(2*(exp(x)-1)))))

(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(2*(exp(x)-1)/lambertw(2*(exp(x)-1))))

CROSSREFS

Cf. A349583, A357245.

Cf. A356908.

Sequence in context: A118326 A212847 A087405 * A001012 A040082 A014358

Adjacent sequences: A357241 A357242 A357243 * A357245 A357246 A357247

KEYWORD

sign

AUTHOR

Seiichi Manyama, Sep 19 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 9 05:05 EST 2023. Contains 360153 sequences. (Running on oeis4.)