login
A137810
a(n) = 2^(2^n+n) - 1.
0
1, 7, 63, 2047, 1048575, 137438953471, 1180591620717411303423, 43556142965880123323311949751266331066367, 29642774844752946028434172162224104410437116074403984394101141506025761187823615
OFFSET
0,2
COMMENTS
An integer is simultaneously a Mersenne number and a Woodall number if and only if it is a member of this sequence. Hence this sequence is the intersection of A000225 and A003261.
LINKS
Wilfrid Keller, New Cullen Primes, Mathematics of Computation, Vol. 64, No. 212 (Ocober 1995), pp. 1733-1741.
FORMULA
a(n) = 2^(2^n+n)-1 = A000225(2^n+n) = A003261(2^n).
EXAMPLE
The fourth integer which is both a Mersenne number and a Woodall number is 2047. Hence a(3)=2047 (as the offset is zero).
MATHEMATICA
2^(2^#+#)-1 &/@Range[0, 8]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ant King, Feb 12 2008
STATUS
approved