|
|
A137811
|
|
Number of digits in the n-th Woodall prime.
|
|
0
|
|
|
1, 2, 3, 11, 25, 27, 37, 40, 78, 112, 119, 142, 157, 229, 251, 1603, 2339, 2874, 3731, 4768, 5690, 6920, 6930, 29725, 43058, 45468, 200815
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Woodall primes are prime numbers of the form n*2^n-1.
|
|
REFERENCES
|
A. Cunningham and H. J. Woodall, Factorisation of Q=(2^q+-q) and (q 2^q+-1), Messenger Math. 47 (1917), pp. 1-38.
Wilfrid Keller, New Cullen Primes, Mathematics of Computation, Vol. 64, No. 212 (Ocober 1995), pp. 1733-1741.
|
|
LINKS
|
Table of n, a(n) for n=1..27.
Woodhall Primes, Definition And Status.
|
|
FORMULA
|
A055642(A050918(n))
|
|
EXAMPLE
|
As the sixth Woodall prime is a 27-digit number, we have a(6)= 27
|
|
CROSSREFS
|
Cf. A055642, A050918, A137716, A002234.
Sequence in context: A292112 A065849 A136402 * A041955 A239445 A157161
Adjacent sequences: A137808 A137809 A137810 * A137812 A137813 A137814
|
|
KEYWORD
|
base,hard,nonn
|
|
AUTHOR
|
Ant King, Feb 12 2008
|
|
STATUS
|
approved
|
|
|
|