OFFSET
1,1
COMMENTS
The ratios of successive partition numbers p(n) / p(n-1) approach 1 monotonically, for n>1. a(k) gives the n for which p(n)/p(n+1) first equals or is less than 1+1/k.
FORMULA
Empirical quadratic fit to first 78 terms: ak^2 + bk + c, a ~ 1.64466, b ~ -0.3287, c ~ -0.66.
Leading term appears to approach 1.644... k^2, where the constant is zeta(2), Pi^2/6. This can probably be rigorously derived from the asymptotic expansion of the partition function, p(n) ~ 1/(4 n sqrt(3)) exp( Pi sqrt(2n/3)).
EXAMPLE
p(2)=2 and p(1)=1, so a(1) = 2, since p(2)/p(1) = 1+1/1.
p(3)=3 and p(2)=2, so a(2)=3, since p(3)/p(2) = 1+1/2.
p(11)=56 and p(10) = 42, so a(3) = 11, since p(11)/p(10) = 1+1/3.
MATHEMATICA
AddDenom = 2;
Breaks = {};
For[n = 2, n < 10000, n++,
If[PartitionsP[n]/PartitionsP[n - 1] <= (1 + (1/AddDenom)),
AppendTo[Breaks, n]; ADH = AddDenom + 1; AddDenom = ADH]
]
Breaks
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
William J. Keith, Mar 18 2014
STATUS
approved