login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239442
a(n) = phi(n^7).
9
1, 64, 1458, 8192, 62500, 93312, 705894, 1048576, 3188646, 4000000, 17715610, 11943936, 57921708, 45177216, 91125000, 134217728, 386201104, 204073344, 846825858, 512000000, 1029193452, 1133799040, 3256789558, 1528823808, 4882812500, 3706989312, 6973568802, 5782683648, 16655052988
OFFSET
1,2
COMMENTS
Number of solutions of the equation gcd(x_1^2 + ... + x_7^2, n)=1 with 0 < x_i <= n.
LINKS
C. Calderón, J. M. Grau, A. Oller-Marcén, and László Tóth, Counting invertible sums of squares modulo n and a new generalization of Euler totient function, arXiv:1403.7878 [math.NT], 2014.
FORMULA
a(n) = n^6*phi(n).
Dirichlet g.f.: zeta(s - 7) / zeta(s - 6). The n-th term of the Dirichlet inverse is n^6 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega=A001221. - Álvar Ibeas, Nov 24 2017
Sum_{k=1..n} a(k) ~ 3*n^8 / (4*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^8 - p^7 - p + 1)) = 1.01646280485545934937... - Amiram Eldar, Dec 06 2020
MAPLE
with(numtheory); A239442:=n->phi(n^7); seq(A239442(n), n=1..100); # Wesley Ivan Hurt, Apr 01 2014
MATHEMATICA
Table[EulerPhi[n^7], {n, 100}]
PROG
(PARI) a(n) = n^6*eulerphi(n); \\ Michel Marcus, Mar 10 2018
CROSSREFS
Defining Phi_k(n):= number of solutions of the equation gcd(x_1^2 + ... + x_k^2, n) = 1 with 0 < x_i <= n.
Phi_1(n) = phi(n) = A000010.
Phi_2(n) = A079458.
Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191.
Phi_4(n) = A227499.
Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533.
Phi_6(n) = A238534.
Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442.
Phi_8(n) = A239441.
Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443.
Sequence in context: A333812 A283812 A264086 * A240930 A208313 A145218
KEYWORD
nonn,mult
AUTHOR
STATUS
approved