login
A239442
a(n) = phi(n^7).
9
1, 64, 1458, 8192, 62500, 93312, 705894, 1048576, 3188646, 4000000, 17715610, 11943936, 57921708, 45177216, 91125000, 134217728, 386201104, 204073344, 846825858, 512000000, 1029193452, 1133799040, 3256789558, 1528823808, 4882812500, 3706989312, 6973568802, 5782683648, 16655052988
OFFSET
1,2
COMMENTS
Number of solutions of the equation gcd(x_1^2 + ... + x_7^2, n)=1 with 0 < x_i <= n.
LINKS
C. Calderón, J. M. Grau, A. Oller-Marcén, and László Tóth, Counting invertible sums of squares modulo n and a new generalization of Euler totient function, arXiv:1403.7878 [math.NT], 2014.
FORMULA
a(n) = n^6*phi(n).
Dirichlet g.f.: zeta(s - 7) / zeta(s - 6). The n-th term of the Dirichlet inverse is n^6 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega=A001221. - Álvar Ibeas, Nov 24 2017
Sum_{k=1..n} a(k) ~ 3*n^8 / (4*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^8 - p^7 - p + 1)) = 1.01646280485545934937... - Amiram Eldar, Dec 06 2020
MAPLE
with(numtheory); A239442:=n->phi(n^7); seq(A239442(n), n=1..100); # Wesley Ivan Hurt, Apr 01 2014
MATHEMATICA
Table[EulerPhi[n^7], {n, 100}]
PROG
(PARI) a(n) = n^6*eulerphi(n); \\ Michel Marcus, Mar 10 2018
CROSSREFS
Defining Phi_k(n):= number of solutions of the equation gcd(x_1^2 + ... + x_k^2, n) = 1 with 0 < x_i <= n.
Phi_1(n) = phi(n) = A000010.
Phi_2(n) = A079458.
Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191.
Phi_4(n) = A227499.
Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533.
Phi_6(n) = A238534.
Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442.
Phi_8(n) = A239441.
Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443.
Sequence in context: A333812 A283812 A264086 * A240930 A208313 A145218
KEYWORD
nonn,mult
AUTHOR
STATUS
approved