Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Dec 06 2020 02:47:39
%S 1,64,1458,8192,62500,93312,705894,1048576,3188646,4000000,17715610,
%T 11943936,57921708,45177216,91125000,134217728,386201104,204073344,
%U 846825858,512000000,1029193452,1133799040,3256789558,1528823808,4882812500,3706989312,6973568802,5782683648,16655052988
%N a(n) = phi(n^7).
%C Number of solutions of the equation gcd(x_1^2 + ... + x_7^2, n)=1 with 0 < x_i <= n.
%H Seiichi Manyama, <a href="/A239442/b239442.txt">Table of n, a(n) for n = 1..10000</a>
%H C. Calderón, J. M. Grau, A. Oller-Marcén, and László Tóth, <a href="http://arxiv.org/abs/1403.7878">Counting invertible sums of squares modulo n and a new generalization of Euler totient function</a>, arXiv:1403.7878 [math.NT], 2014.
%F a(n) = n^6*phi(n).
%F Dirichlet g.f.: zeta(s - 7) / zeta(s - 6). The n-th term of the Dirichlet inverse is n^6 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega=A001221. - _Álvar Ibeas_, Nov 24 2017
%F Sum_{k=1..n} a(k) ~ 3*n^8 / (4*Pi^2). - _Vaclav Kotesovec_, Feb 02 2019
%F Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^8 - p^7 - p + 1)) = 1.01646280485545934937... - _Amiram Eldar_, Dec 06 2020
%p with(numtheory); A239442:=n->phi(n^7); seq(A239442(n), n=1..100); # _Wesley Ivan Hurt_, Apr 01 2014
%t Table[EulerPhi[n^7], {n, 100}]
%o (PARI) a(n) = n^6*eulerphi(n); \\ _Michel Marcus_, Mar 10 2018
%Y Defining Phi_k(n):= number of solutions of the equation gcd(x_1^2 + ... + x_k^2, n) = 1 with 0 < x_i <= n.
%Y Phi_1(n) = phi(n) = A000010.
%Y Phi_2(n) = A079458.
%Y Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191.
%Y Phi_4(n) = A227499.
%Y Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533.
%Y Phi_6(n) = A238534.
%Y Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442.
%Y Phi_8(n) = A239441.
%Y Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443.
%K nonn,mult
%O 1,2
%A _José María Grau Ribas_, Mar 19 2014