login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239441
Number of invertible octonions over Z/nZ.
5
1, 128, 4320, 32768, 312000, 552960, 4939200, 8388608, 28343520, 39936000, 194858400, 141557760, 752955840, 632217600, 1347840000, 2147483648, 6565340160, 3627970560, 16089567840, 10223616000, 21337344000, 24941875200, 74905892160, 36238786560, 121875000000, 96378347520
OFFSET
1,2
COMMENTS
Number of octonions over Z/nZ with invertible norm; i.e., number of solutions of the equation gcd(x_1^2 + ... + x_8^2, n)=1 with 0 < x_i <= n.
LINKS
Catalina Calderón, Jose Maria Grau, A. Oller-Marcén, and László Tóth, Counting invertible sums of squares modulo n and a new generalization of Euler's totient function, Publicationes Mathematicae-Debrecen, Vol. 87 (1-2) (2015), pp. 133-145; arXiv preprint, arXiv:1403.7878 [math.NT], 2014.
FORMULA
Multiplicative with a(2^e) = 2^(8*e-1), a(p^e) = (p - 1)*p^(8*e - 5)*(p^4 - 1) for odd prime p. - Andrew Howroyd, Aug 06 2018
Sum_{k=1..n} a(k) ~ c * n^9, where c = (16/141) * Product_{p prime} (1 - 1/p^2 - 1/p^5 + 1/p^6) = 0.06731687367... . - Amiram Eldar, Nov 30 2022
From Amiram Eldar, Feb 13 2024: (Start)
Dirichlet g.f.: zeta(s-8) * (1 - 1/2^(s-7)) * Product_{p prime > 2} (1 - 1/p^(s-7) - (p-1)/p^(s-3)).
Sum_{n>=1} 1/a(n) = (257*Pi^14/1312151400) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^6 + 1/p^9 + 1/p^10 + 1/p^12 - 1/p^14) = 1.00807991170717322545... . (End)
MATHEMATICA
fa=FactorInteger; lon[n_]:=Length[fa[n]]; Phi[k_, n_] := Which[Mod[k, 2] == 1, n^(k - 1)*EulerPhi[n], Mod[k, 4] ==0, n^(k - 1)*EulerPhi[n]*Product[1 - 1/fa[2n][[i, 1]]^(k/2), {i, 2, lon[2 n]}], True, n^(k - 1)*EulerPhi[n]*Product[Which[ Mod[fa[ n][[i, 1]], 4] == 3 , 1 + 1/fa[ n][[i, 1]]^(k/2), Mod[fa[ n][[i, 1]], 4] == 1, 1 - 1/fa[ n][[i, 1]]^(k/2), True, 1], {i, 1, lon[ n]}]]; Table[Phi[8, n], {n, 1, 100}]
f[p_, e_] := (p-1)*p^(8*e-1) * If[p == 2, 1, 1 - 1/p^4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Feb 13 2024 *)
PROG
(PARI) a(n)={my(p=lift(Mod(sum(i=0, n-1, x^(i^2%n)), x^n-1)^8)); sum(i=0, n-1, if(gcd(i, n)==1, polcoeff(p, i)))} \\ Andrew Howroyd, Aug 06 2018
(PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my([p, e]=f[i, ]); if(p==2, 2^(8*e-1), (p - 1)*p^(8*e - 5)*(p^4 - 1)))} \\ Andrew Howroyd, Aug 06 2018
CROSSREFS
Sequences giving the number of solutions to the equation gcd(x_1^2+...+x_k^2, n) = 1 with 0 < x_i <= n: A000010 (k=1), A079458 (k=2), A053191 (k=3), A227499 (k=4), A238533 (k=5), A238534 (k=6), A239442 (k=7), A239441 (k=8), A239443 (k=9).
Sequence in context: A250172 A188303 A283813 * A306412 A240931 A282527
KEYWORD
nonn,easy,mult
AUTHOR
STATUS
approved