login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240931 a(n) = n^8 - n^7. 4
0, 0, 128, 4374, 49152, 312500, 1399680, 4941258, 14680064, 38263752, 90000000, 194871710, 394149888, 752982204, 1370375552, 2392031250, 4026531840, 6565418768, 10407740544, 16089691302, 24320000000, 36021770820, 52381515648, 74906159834, 105488842752, 146484375000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
For n>1 number of 8-digit positive integers in base n.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = n^7*(n-1) = n^8 - n^7.
a(n) = A001016(n) - A001015(n).
G.f.: -2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9. - Colin Barker, Aug 08 2014
Sum_{n>=2} 1/a(n) = 7 - Sum_{k=2..7} zeta(k). - Amiram Eldar, Jul 05 2020
MAPLE
A240931:=n->n^8-n^7: seq(A240931(n), n=0..30); # Wesley Ivan Hurt, Aug 09 2014
MATHEMATICA
Table[n^8 - n^7, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 09 2014 *)
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 0, 128, 4374, 49152, 312500, 1399680, 4941258, 14680064}, 30] (* Harvey P. Dale, Apr 29 2016 *)
PROG
(PARI) vector(100, n, (n-1)^8 - (n-1)^7) \\ Derek Orr, Aug 03 2014
(PARI) concat([0, 0], Vec(-2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9 + O(x^100))) \\ Colin Barker, Aug 08 2014
(Magma) [n^8-n^7 : n in [0..30]]; // Wesley Ivan Hurt, Aug 09 2014
CROSSREFS
Sequence in context: A283813 A239441 A306412 * A282527 A297093 A185488
KEYWORD
nonn,easy
AUTHOR
Martin Renner, Aug 03 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 15 22:08 EDT 2024. Contains 375959 sequences. (Running on oeis4.)