|
|
A240931
|
|
a(n) = n^8 - n^7.
|
|
4
|
|
|
0, 0, 128, 4374, 49152, 312500, 1399680, 4941258, 14680064, 38263752, 90000000, 194871710, 394149888, 752982204, 1370375552, 2392031250, 4026531840, 6565418768, 10407740544, 16089691302, 24320000000, 36021770820, 52381515648, 74906159834, 105488842752, 146484375000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
For n>1 number of 8-digit positive integers in base n.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = n^7*(n-1) = n^8 - n^7.
G.f.: -2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9. - Colin Barker, Aug 08 2014
Sum_{n>=2} 1/a(n) = 7 - Sum_{k=2..7} zeta(k). - Amiram Eldar, Jul 05 2020
|
|
MAPLE
|
|
|
MATHEMATICA
|
LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {0, 0, 128, 4374, 49152, 312500, 1399680, 4941258, 14680064}, 30] (* Harvey P. Dale, Apr 29 2016 *)
|
|
PROG
|
(PARI) vector(100, n, (n-1)^8 - (n-1)^7) \\ Derek Orr, Aug 03 2014
(PARI) concat([0, 0], Vec(-2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9 + O(x^100))) \\ Colin Barker, Aug 08 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|