login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^8 - n^7.
4

%I #41 Sep 08 2022 08:46:07

%S 0,0,128,4374,49152,312500,1399680,4941258,14680064,38263752,90000000,

%T 194871710,394149888,752982204,1370375552,2392031250,4026531840,

%U 6565418768,10407740544,16089691302,24320000000,36021770820,52381515648,74906159834,105488842752,146484375000

%N a(n) = n^8 - n^7.

%C For n>1 number of 8-digit positive integers in base n.

%H Vincenzo Librandi, <a href="/A240931/b240931.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1).

%F a(n) = n^7*(n-1) = n^8 - n^7.

%F a(n) = A001016(n) - A001015(n).

%F G.f.: -2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9. - _Colin Barker_, Aug 08 2014

%F Sum_{n>=2} 1/a(n) = 7 - Sum_{k=2..7} zeta(k). - _Amiram Eldar_, Jul 05 2020

%p A240931:=n->n^8-n^7: seq(A240931(n), n=0..30); # _Wesley Ivan Hurt_, Aug 09 2014

%t Table[n^8 - n^7, {n, 0, 30}] (* _Wesley Ivan Hurt_, Aug 09 2014 *)

%t LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{0,0,128,4374,49152,312500,1399680,4941258,14680064},30] (* _Harvey P. Dale_, Apr 29 2016 *)

%o (PARI) vector(100, n, (n-1)^8 - (n-1)^7) \\ _Derek Orr_, Aug 03 2014

%o (PARI) concat([0,0], Vec(-2*x^2*(x^6+183*x^5+2682*x^4+8422*x^3+7197*x^2+1611*x+64) / (x-1)^9 + O(x^100))) \\ _Colin Barker_, Aug 08 2014

%o (Magma) [n^8-n^7 : n in [0..30]]; // _Wesley Ivan Hurt_, Aug 09 2014

%Y Cf. A001015, A001016.

%Y Cf. A002378, A045991, A085537, A085538, A085539, A240930, A240932, A240933.

%K nonn,easy

%O 0,3

%A _Martin Renner_, Aug 03 2014