login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240933
a(n) = n^10 - n^9.
4
0, 0, 512, 39366, 786432, 7812500, 50388480, 242121642, 939524096, 3099363912, 9000000000, 23579476910, 56757583872, 127253992476, 268593608192, 538207031250, 1030792151040, 1897406023952, 3372107936256, 5808378560022, 9728000000000, 15885600931620, 25352653573632
OFFSET
0,3
COMMENTS
For n>1 number of 10-digit positive integers in base n.
LINKS
FORMULA
a(n) = n^9*(n-1) = n^10 - n^9.
a(n) = A008454(n) - A001017(n). - Michel Marcus, Aug 03 2014
G.f.: 2*(256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11. - Wesley Ivan Hurt, Aug 03 2014
Recurrence: a(n) = 11*a(n-1)-55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11). - Wesley Ivan Hurt, Aug 03 2014
Sum_{n>=2} 1/a(n) = 9 - Sum_{k=2..9} zeta(k). - Amiram Eldar, Jul 05 2020
MAPLE
A240933:=n->n^10-n^9: seq(A240933(n), n=0..30); # Wesley Ivan Hurt, Aug 03 2014
MATHEMATICA
Table[n^10 - n^9, {n, 0, 30}] (* Wesley Ivan Hurt, Aug 03 2014 *)
CoefficientList[Series[2 (256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 03 2014 *)
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {0, 0, 512, 39366, 786432, 7812500, 50388480, 242121642, 939524096, 3099363912, 9000000000}, 40] (* Harvey P. Dale, Oct 19 2022 *)
PROG
(PARI) vector(100, n, (n-1)^10 - (n-1)^9) \\ Derek Orr, Aug 03 2014
(Magma) [n^10-n^9 : n in [0..30]]; // Wesley Ivan Hurt, Aug 03 2014
KEYWORD
nonn,easy
AUTHOR
Martin Renner, Aug 03 2014
STATUS
approved