login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085538 a(n) = n^5 - n^4. 7
0, 0, 16, 162, 768, 2500, 6480, 14406, 28672, 52488, 90000, 146410, 228096, 342732, 499408, 708750, 983040, 1336336, 1784592, 2345778, 3040000, 3889620, 4919376, 6156502, 7630848, 9375000, 11424400, 13817466, 16595712, 19803868, 23490000, 27705630, 32505856 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For n >= 1, a(n) is equal to the number of functions f:{1,2,3,4,5}->{1,2,...,n} such that for a fixed x in {1,2,3,4,5} and a fixed y in {1,2,...,n} we have f(x) <> y. - Aleksandar M. Janjic and Milan Janjic, Mar 13 2007

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

G.f.: 2*x^2*(x^3 + 18*x^2 + 33*x + 8)/(x-1)^6. - Colin Barker, Nov 06 2012

Sum_{n>=2} 1/a(n) = 4 - zeta(2) - zeta(3) - zeta(4). - Amiram Eldar, Jul 05 2020

MAPLE

a:=n->sum(sum(n^3, j=1..n), k=2..n): seq(a(n), n=0..31); # Zerinvary Lajos, May 09 2007

MATHEMATICA

Table[n^5 - n^4, {n, 0, 40}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 16, 162, 768, 2500}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)

PROG

(MAGMA) [n^5-n^4: n in [0..50]]; // Vincenzo Librandi, Feb 12 2012

(PARI) a(n)=n^5-n^4 \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

A diagonal of A228273.

Cf. A000583, A000584.

Sequence in context: A011551 A335175 A238533 * A259547 A211558 A333062

Adjacent sequences:  A085535 A085536 A085537 * A085539 A085540 A085541

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jul 05 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 13:02 EST 2021. Contains 349407 sequences. (Running on oeis4.)