login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146492
Decimal expansion of Product_{n>=2} (1 - 1/(n^4*(n-1))).
1
9, 2, 9, 8, 3, 8, 4, 7, 3, 9, 5, 4, 3, 4, 6, 8, 5, 2, 2, 3, 8, 3, 1, 8, 4, 6, 9, 5, 3, 4, 5, 5, 3, 5, 4, 8, 9, 4, 4, 9, 0, 8, 3, 0, 5, 4, 8, 2, 2, 5, 3, 6, 3, 5, 2, 3, 6, 7, 5, 7, 4, 9, 7, 0, 6, 9, 7, 3, 5, 3, 7, 8, 0, 0, 2, 2, 5, 8, 0, 8, 2, 2, 3, 2, 2, 2, 3, 4, 5, 7, 6, 6, 4, 0, 2, 7, 0, 3, 1, 2, 0, 2, 4, 1, 5
OFFSET
0,1
COMMENTS
Product of Artin's constant of rank 4 and the equivalent almost-prime products.
FORMULA
The logarithm is -Sum_{s>=2} Sum_{j=1..floor(s/(1+r))} binomial(s-r*j-1, j-1)*(1-Zeta(s))/j at r = 4.
s*Sum_{j=1..floor(s/5)} binomial(s-4j-1, j-1)/j = A058368(s)-1.
Equals 1/Product_{k=1..5} Gamma(1-x_k), where x_k are the 5 roots of the polynomial x*(x+1)^4-1. [R. J. Mathar, Feb 20 2009]
EXAMPLE
0.9298384739543468522383.. = (1-1/16)*(1-1/162)*(1-1/768)*(1-1/2500)*..
MAPLE
r := 4 : ni := fsolve( (n+1)^r*n-1, n, complex) : 1.0/mul(GAMMA(1-d), d=ni) ; # R. J. Mathar, Feb 20 2009
MATHEMATICA
g[k_] := Gamma[Root[-5 + 11# - 6#^2 + #^3 & , k]]; RealDigits[Cosh[(Sqrt[3] Pi)/2]/(Pi g[1] g[2] g[3]) // Re, 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)
RealDigits[Re[N[Product[1 - 1/(n^4 (n - 1)), {n, 2, Infinity}], 110]]] (* Bruno Berselli, Apr 02 2013 *)
CROSSREFS
Cf. A065416.
Sequence in context: A200234 A242743 A197812 * A266565 A090298 A248315
KEYWORD
nonn,cons,easy
AUTHOR
R. J. Mathar, Feb 13 2009
EXTENSIONS
More terms from Jean-François Alcover, Feb 12 2013
STATUS
approved