login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Product_{n>=2} (1 - 1/(n^4*(n-1))).
1

%I #12 Aug 06 2017 22:28:43

%S 9,2,9,8,3,8,4,7,3,9,5,4,3,4,6,8,5,2,2,3,8,3,1,8,4,6,9,5,3,4,5,5,3,5,

%T 4,8,9,4,4,9,0,8,3,0,5,4,8,2,2,5,3,6,3,5,2,3,6,7,5,7,4,9,7,0,6,9,7,3,

%U 5,3,7,8,0,0,2,2,5,8,0,8,2,2,3,2,2,2,3,4,5,7,6,6,4,0,2,7,0,3,1,2,0,2,4,1,5

%N Decimal expansion of Product_{n>=2} (1 - 1/(n^4*(n-1))).

%C Product of Artin's constant of rank 4 and the equivalent almost-prime products.

%F The logarithm is -Sum_{s>=2} Sum_{j=1..floor(s/(1+r))} binomial(s-r*j-1, j-1)*(1-Zeta(s))/j at r = 4.

%F s*Sum_{j=1..floor(s/5)} binomial(s-4j-1, j-1)/j = A058368(s)-1.

%F Equals 1/Product_{k=1..5} Gamma(1-x_k), where x_k are the 5 roots of the polynomial x*(x+1)^4-1. [_R. J. Mathar_, Feb 20 2009]

%e 0.9298384739543468522383.. = (1-1/16)*(1-1/162)*(1-1/768)*(1-1/2500)*..

%p r := 4 : ni := fsolve( (n+1)^r*n-1,n,complex) : 1.0/mul(GAMMA(1-d),d=ni) ; # _R. J. Mathar_, Feb 20 2009

%t g[k_] := Gamma[Root[-5 + 11# - 6#^2 + #^3 & , k]]; RealDigits[Cosh[(Sqrt[3] Pi)/2]/(Pi g[1] g[2] g[3]) // Re, 10, 105] // First (* _Jean-François Alcover_, Feb 12 2013 *)

%t RealDigits[Re[N[Product[1 - 1/(n^4 (n - 1)), {n, 2, Infinity}], 110]]] (* _Bruno Berselli_, Apr 02 2013 *)

%Y Cf. A065416.

%K nonn,cons,easy

%O 0,1

%A _R. J. Mathar_, Feb 13 2009

%E More terms from _Jean-François Alcover_, Feb 12 2013