login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^10 - n^9.
4

%I #34 Feb 09 2024 12:39:02

%S 0,0,512,39366,786432,7812500,50388480,242121642,939524096,3099363912,

%T 9000000000,23579476910,56757583872,127253992476,268593608192,

%U 538207031250,1030792151040,1897406023952,3372107936256,5808378560022,9728000000000,15885600931620,25352653573632

%N a(n) = n^10 - n^9.

%C For n>1 number of 10-digit positive integers in base n.

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).

%F a(n) = n^9*(n-1) = n^10 - n^9.

%F a(n) = A008454(n) - A001017(n). - _Michel Marcus_, Aug 03 2014

%F G.f.: 2*(256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11. - _Wesley Ivan Hurt_, Aug 03 2014

%F Recurrence: a(n) = 11*a(n-1)-55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11). - _Wesley Ivan Hurt_, Aug 03 2014

%F Sum_{n>=2} 1/a(n) = 9 - Sum_{k=2..9} zeta(k). - _Amiram Eldar_, Jul 05 2020

%p A240933:=n->n^10-n^9: seq(A240933(n), n=0..30); # _Wesley Ivan Hurt_, Aug 03 2014

%t Table[n^10 - n^9, {n, 0, 30}] (* _Wesley Ivan Hurt_, Aug 03 2014 *)

%t CoefficientList[Series[2 (256*x^2 + 16867*x^3 + 190783*x^4 + 621199*x^5 + 689155*x^6 + 264409*x^7 + 30973*x^8 + 757*x^9 + x^10)/(1 - x)^11, {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Aug 03 2014 *)

%t LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,0,512,39366,786432,7812500,50388480,242121642,939524096,3099363912,9000000000},40] (* _Harvey P. Dale_, Oct 19 2022 *)

%o (PARI) vector(100, n, (n-1)^10 - (n-1)^9) \\ _Derek Orr_, Aug 03 2014

%o (Magma) [n^10-n^9 : n in [0..30]]; // _Wesley Ivan Hurt_, Aug 03 2014

%Y Cf. A001017, A008454.

%Y Cf. A002378, A045991, A085537, A085538, A085539, A240930, A240931, A240932.

%K nonn,easy

%O 0,3

%A _Martin Renner_, Aug 03 2014