login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284033 Poly-Bernoulli numbers B_n^(k) with k = -9. 2
1, 512, 38854, 1455278, 37712866, 779305142, 13821281314, 219680806598, 3216941445106, 44222780245622, 578333776748674, 7265797378375718, 88340967898764946, 1045408905465897302, 12094777018030598434, 137292855542017989638 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is also the number of acyclic orientations of the complete bipartite graph K_{9,n}. - Vincent Pilaud, Sep 16 2020

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..994

Index entries for linear recurrences with constant coefficients, signature (54,-1266,16884,-140889,761166,-2655764,5753736,-6999840,3628800).

FORMULA

a(n) = 362880*10^n - 1451520*9^n + 2328480*8^n - 1905120*7^n + 834120*6^n - 186480*5^n + 18150*4^n - 510*3^n + 2^n.

MATHEMATICA

Table[362880*10^n - 1451520*9^n + 2328480*8^n - 1905120*7^n + 834120*6^n - 186480*5^n + 18150*4^n - 510*3^n + 2^n, {n, 0, 20}] (* Indranil Ghosh, Mar 19 2017 *)

PROG

(PARI) a(n) = 362880*10^n - 1451520*9^n + 2328480*8^n - 1905120*7^n + 834120*6^n - 186480*5^n + 18150*4^n - 510*3^n + 2^n; \\ Indranil Ghosh, Mar 19 2017

(Python) def a(n): return 362880*10**n - 1451520*9**n + 2328480*8**n - 1905120*7**n + 834120*6**n - 186480*5**n + 18150*4**n - 510*3**n + 2**n # Indranil Ghosh, Mar 19 2017

CROSSREFS

Row 9 of array A099594.

Sequence in context: A254383 A253977 A254084 * A240933 A250567 A035753

Adjacent sequences:  A284030 A284031 A284032 * A284034 A284035 A284036

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Mar 18 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 15:54 EDT 2022. Contains 356986 sequences. (Running on oeis4.)